Save
Download PDF

Liver X receptors (LXRs), particularly LXRβ, are emerging as crucial players in the translation of basic neuroscience to clinical psychiatry. These nuclear receptor transcription factors, initially known for their roles in cholesterol metabolism and inflammation, are now revealing promising connections between molecular mechanisms and psychiatric symptoms. This review highlights recent breakthroughs in understanding LXRβ's regulation and function in behaviors relevant to depression and anxiety, derived from studies using animal paradigms that capture specific features of these disorders. We explore how these preclinical findings are shaping our comprehension of mood-related behaviors at the molecular level and potentially paving the way for innovative therapeutic strategies. As a ligand-activated transcription factor, LXRβ represents a novel target for drug development, potentially bridging the gap between bench discoveries and bedside treatments for neuropsychiatric disorders. We discuss the challenges and opportunities in translating LXRβ research into clinical interventions, emphasizing the potential for personalized medicine approaches in psychiatry. This bench-to-bedside article underscores the importance of LXRβ research in advancing our understanding and treatment of complex mental health conditions, while acknowledging the nuanced interpretation required when extrapolating from animal studies to human disorders.

Keywords: LXRβ (Liver X Receptor beta); depression; anxiety; autism; neuroinflammation

Historical Perspective: LXRβ

Liver X receptors, LXRα and LXRβ, are members of the nuclear receptor family of ligand-activated transcription factors (1). The first cloned member, initially named RLD1 and liver X receptor (2, 3), was later renamed LXRα. Our laboratory discovered LXRβ, originally calling it OR-1 (4). Other labs simultaneously identified it under various names: UR (5), NER (6), and RIP-15 (7). Its similarity to LXRα led to its current name, LXRβ.

LXRα is well-known for its role in cholesterol homeostasis, with both receptors often dubbed master regulators of this process (8, 9). Oxysterols, which are oxygenated forms of cholesterol, serve as natural ligands for LXRs. While LXRs are most recognized for their influence on cholesterol homeostasis, LXRβ's functions extend far beyond. It regulates various transport mechanisms, including aquaporins for water transport (1012), GLUT4 for glucose transport (13), MCT8 and MCT10 for thyroid hormone transport (14), and ApoE and ABC transporters for cholesterol transport (15). This diverse involvement explains LXRβ's wide-ranging effects throughout the body.

Research on LXRα has primarily focused on organs involved in lipid metabolism, such as the liver, intestine, adipose tissue, and within the immune system, particularly in macrophages (16). In contrast, LXRβ shows a broader tissue distribution. While its liver expression is minimal, LXRβ is well-expressed in immune system cells, CNS glial cells, the colon, gallbladder, pancreatic islets, retina, and inner ear (1723). It is also widely expressed in fetal brain neurons (24, 25). Both LXRα and LXRβ are present in reproductive tissues like the ovary, testis, prostate epithelium, and epididymis, where they play significant roles (2629).

LXRs form heterodimers with retinoid X receptors (RXRs) and bind to specific DNA response elements called DR4s. These are direct repeats of the half-site sequence 5′-G/AGGTCA-3′, separated by four nucleotides, also used by thyroid hormone receptors (3). Our research has shown that LXRβ protects neurons in both central and peripheral nervous systems. This protection extends to dopaminergic neurons in the substantia nigra (30), large motor neurons in the spinal cord's ventral horn (31, 32), epithelial cells of the choroid plexus (11), retinal ganglion cells (22), and spiral ganglion neurons (23). Recent reviews have thoroughly explored LXRs' role in neurodegenerative diseases like Alzheimer's disease (AD) (8, 33), Parkinson's disease (PD) (34, 35), amyotrophic lateral sclerosis (ALS) (36), and multiple sclerosis (MS) (37).

Role of LXRβ in Depression

Studies have demonstrated LXRβ's protective effects against depression-like behaviors in rodents, influencing neurons, microglia, oligodendrocytes, and astrocytes (Table 1). In rats exposed to chronic unpredictable stress (CUS), hippocampal LXRβ levels decrease. Treatment with the LXR agonist GW3965 reduces depression-like behavior and improves hippocampal neurogenesis in these rats (38). LXR's inhibition of microglial activation and neuroinflammation is a crucial protective mechanism, as seen in various injury paradigms (3943). Several studies show that GW3965 treatment can modulate microglial status and suppress neuroinflammation, thereby improving emotional and cognitive functions as well as reducing depression-like behaviors in CUS-induced and other experimental paradigms (4447). Additionally, GW3965's stimulation of oligodendrocyte maturation and enhanced myelination may contribute to the antidepressant effects of LXR agonists (48).

Table 1.Summary of LXRβ effects on depression-like and anxiety-like behaviors in experimental rodent paradigms
Neuropsychiatric-related behaviors Experimental paradigm LXRβ ligand Effects Reference
Depression-like Chronic unpredictable stress (CUS) exposure in rats GW3965 Regulation of hippocampal neurogenesis (38)
CUS and lipopolysaccharide exposure in mice GW3965 Inhibits microglial M1 polarization and restores synaptic plasticity (44)
CUS exposure in mice GW3965 Suppresses microglial activation and neuroinflammation in hippocampal subregions

(45)
CUS exposure in mice GW3965 Improvement of oligodendrocyte maturation and enhancement of myelination (48)
CUMS and corticosterone drinking paradigm in mice T0901317 Suppresses neuroinflammation by inhibiting NF-κB signaling and NLRP3 inflammasome activation (46)
Anxiety-like LXRβ-deficient female mice Decreased glutamic acid decarboxylase (65+67) in the ventromedial PFC (51)
LXRβ-deficient male mice Abnormality in locomotor activity and exploratory behavior, demyelination (52)
Forced swimming stress exposure in mice GW3965 Rebalancing excitatory and inhibitory neurotransmission (54)
Astrocyte-specific LXRβ-deficient mice Impaired synaptic transmission in mPFC (53)

While LXR's role in depression-like behaviors has been extensively studied in mice (Table 1), research on LXR in the human brain is limited. Only one study to date has explored this connection (49), identifying a link between impaired LXR signaling and schizophrenia. RNA sequencing of dysfunctional dorsolateral prefrontal cortex gray matter revealed gene expression patterns indicative of abnormalities in LXR-regulated lipid metabolism pathways in schizophrenia patients. The study concluded that aberrations in LXR/RXR-regulated lipid metabolism lead to decreased lipid content in the prefrontal cortex, correlating with reduced cognitive performance.

Role of LXRβ in Anxiety

Anxiety disorders are the most prevalent psychiatric conditions (50). Female mice lacking LXRβ exhibit anxiety-like behavior and impaired behavioral responses (Table 1) (51). These mice show reduced expression of glutamate decarboxylase (65+67), the enzyme responsible for GABA synthesis, in the ventromedial prefrontal cortex (PFC). Further studies demonstrated that loss of LXRβ function results in abnormalities in locomotor activity and exploratory behavior, as well as anxiety-like symptoms (52). LXR is expressed in microglia, astrocytes, and oligodendrocytes in the adult mouse CNS (18). Intriguingly, specific deletion of LXRβ from astrocytes resulted in anxiety-like, but not depression-like behaviors in adult male mice (53). This work suggests that astrocytic LXRβ in the medial PFC plays a critical role in regulating synaptic transmission. In an experimental paradigm of stress-induced anxiety-like behavior, the LXR agonist GW3965 exerted anxiolytic effects by restoring the balance between excitatory and inhibitory neurotransmission through LXRβ signaling activation in the amygdala (54).

Role of LXRβ in Autism

Autism, now referred to as autism spectrum disorder (ASD), is a pervasive neurodevelopmental disorder. Defects in dentate gyrus neurogenesis appear to be implicated in the development of ASD-like behaviors. LXRβ-deficient mice exhibited early alterations in dentate gyrus neurogenesis and displayed autistic-like behaviors, such as deficits in social interaction and repetitive behaviors (55). Additionally, LXR agonist T0901317 attenuated social deficits and stereotypical behaviors in BTBR T+tf/J (BTBR) and valproic acid (VPA) experimental paradigms (56).

Improving hippocampal neurogenesis appears to be a novel strategy for ASD treatment (57). LXRβ signaling regulates neurogenesis and enhances cognitive function (5863). In 2019, Theofilopoulos et al. illustrated that 24(S),25-epoxycholesterol, the most potent and abundant LXR ligand in the developing mouse midbrain, along with cholesterol 24S-hydroxylase (CYP46A1) overexpression, facilitated midbrain dopaminergic neurogenesis in vivo (64). Notably, the 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. In 2024, De La Fuente et al. recently established a connection between LXRβ deficiency and neurodevelopmental disorders (65). This study revealed that the strong interaction of LXRβ with 24(S),25-epoxycholesterol is essential for neuronal maturation, while low activation of LXRβ leads to maintenance of the neuronal precursor phenotype. The study delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying the 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.

In 2024, Menteşe Babayiğit et al. demonstrated that there is no association between the identified LXRβ (rs2695121/rs17373080) single nucleotide polymorphism and ASD (66). The study cohort comprised 107 children with autism (aged 2-18 years) and 103 age-matched children without autism. Despite the negative genetic association their data revealed that, compared to healthy developing children, those with ASD exhibited significantly higher levels of total cholesterol, low-density lipoprotein, and triglycerides, alongside markedly decreased levels of 27-hydroxycholesterol, suggesting its potential as a diagnostic marker for ASD.

Concluding Remarks

The available evidence suggests that LXRβ plays a pivotal role in preventing CNS disease in experimental rodent paradigms. If these observations translate to humans, LXRβ could emerge as a novel therapeutic target for treating neuropsychiatric disorders, particularly depression and anxiety. However, additional basic research and clinical trials are imperative to ascertain whether novel drugs targeting LXRβ can be effectively utilized in the clinical treatment of neurological and neuropsychiatric diseases.

Declaration of Possible Conflicts of Interest

The contributors have confirmed that no conflict of interest exists.

Author Contributions

J.-Å. G. and XS conceived the review topic. XS wrote the draft and prepared tables. All authors revised the final manuscript and approved the final version.

Acknowledgments

J.-Å. G. acknowledges Robert A. Welch Foundation grant E-0004 and the Swedish Research Council. The authors would like to thank Margaret Warner for constructive criticism of the manuscript.

References

  • 1.

    Jakobsson T
    ,
    Treuter E
    ,
    Gustafsson JA
    ,
    Steffensen KR
    . Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 2012;33(
    7
    ):394404. DOI: 10.1016/j.tips.2012.03.013. PMID: 22541735

  • 2.

    Apfel R
    ,
    Benbrook D
    ,
    Lernhardt E
    ,
    Ortiz MA
    ,
    Salbert G
    ,
    Pfahl M
    . A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol. 1994;14(
    10
    ):702535. DOI: 10.1128/mcb.14.10.7025-7035.1994. PMID: 7935418; PMCID: PMC359232

  • 3.

    Willy PJ
    ,
    Umesono K
    ,
    Ong ES
    ,
    Evans RM
    ,
    Heyman RA
    ,
    Mangelsdorf DJ
    . LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9(
    9
    ):103345. DOI: 10.1101/gad.9.9.1033. PMID: 7744246

  • 4.

    Teboul M
    ,
    Enmark E
    ,
    Li Q
    ,
    Wikstrom AC
    ,
    Pelto-Huikko M
    ,
    Gustafsson JA
    . OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Nat Acad Sci USA. 1995;92(
    6
    ):2096100. DOI: 10.1073/pnas.92.6.2096. PMID: 7892230; PMCID: PMC42430

  • 5.

    Song C
    ,
    Kokontis JM
    ,
    Hiipakka RA
    ,
    Liao S
    . Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Nat Acad Sci USA. 1994;91(
    23
    ):1080913. DOI: 10.1073/pnas.91.23.10809. PMID: 7971966; PMCID: PMC45115

  • 6.

    Shinar DM
    ,
    Endo N
    ,
    Rutledge SJ
    ,
    Vogel R
    ,
    Rodan GA
    ,
    Schmidt A
    . NER, a new member of the gene family encoding the human steroid hormone nuclear receptor. Gene. 1994;147(
    2
    ):2736. DOI: 10.1016/0378-1119(94)90080-9. PMID: 7926814

  • 7.

    Seol W
    ,
    Choi HS
    ,
    Moore DD
    . Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol. 1995;9(
    1
    ):7285. DOI: 10.1210/mend.9.1.7760852. PMID: 7760852

  • 8.

    Courtney R
    ,
    Landreth GE
    . LXR Regulation of brain cholesterol: from development to disease. Trends Endocrinol Metab. 2016;27(
    6
    ):40414. DOI: 10.1016/j.tem.2016.03.018. PMID: 27113081; PMCID: PMC4986614

  • 9.

    Zelcer N
    ,
    Tontonoz P
    . Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116(
    3
    ):60714. DOI: 10.1172/JCI27883. PMID: 16511593; PMCID: PMC1386115

  • 10.

    Gabbi C
    ,
    Kong X
    ,
    Suzuki H
    ,
    Kim HJ
    ,
    Gao M
    ,
    Jia X
    , et al. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor beta. Proc Nat Acad Sci USA. 2012;109(
    8
    ):30304. DOI: 10.1073/pnas.1200588109. PMID: 22323586; PMCID: PMC3286995

  • 11.

    Dai YB
    ,
    Wu WF
    ,
    Huang B
    ,
    Miao YF
    ,
    Nadarshina S
    ,
    Warner M
    , et al. Liver X receptors regulate cerebrospinal fluid production. Mol Psychiatry. 2016;21(
    6
    ):84456. DOI: 10.1038/mp.2015.133. PMID: 26324101

  • 12.

    Su W
    ,
    Huang SZ
    ,
    Gao M
    ,
    Kong XM
    ,
    Gustafsson JA
    ,
    Xu SJ
    , et al. Liver X receptor beta increases aquaporin 2 protein level via a posttranscriptional mechanism in renal collecting ducts. Am J Physiol Ren Physiol. 2017;312(
    4
    ):F61928. DOI: 10.1152/ajprenal.00564.2016. PMID: 28052875

  • 13.

    Laffitte BA
    ,
    Chao LC
    ,
    Li J
    ,
    Walczak R
    ,
    Hummasti S
    ,
    Joseph SB
    , et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Nat Acad Sci USA. 2003;100(
    9
    ):541924. DOI: 10.1073/pnas.0830671100. PMID: 12697904; PMCID: PMC154360

  • 14.

    Miao Y
    ,
    Wu W
    ,
    Dai Y
    ,
    Maneix L
    ,
    Huang B
    ,
    Warner M
    , et al. Liver X receptor beta controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Nat Acad Sci USA. 2015;112(
    45
    ):1400611. DOI: 10.1073/pnas.1519358112. PMID: 26504234; PMCID: PMC4653192

  • 15.

    Wang B
    ,
    Tontonoz P
    . Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14(
    8
    ):45263. DOI: 10.1038/s41574-018-0037-x. PMID: 29904174; PMCID: PMC6433546

  • 16.

    Schulman IG
    . Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017;591(
    19
    ):297891. DOI: 10.1002/1873-3468.12702. PMID: 28555747; PMCID: PMC5638683

  • 17.

    Korach-Andre M
    ,
    Gustafsson JA
    . Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(
    3
    ):17790. DOI: 10.1515/bmc-2015-0007. PMID: 25945723

  • 18.

    Song X
    ,
    Wu W
    ,
    Warner M
    ,
    Gustafsson JA
    . Liver X receptor regulation of glial cell functions in the CNS. Biomedicines. 2022;10(
    9
    ):2165. DOI: 10.3390/biomedicines10092165. PMID: 36140266; PMCID: PMC9496004

  • 19.

    Song X
    ,
    Wu W
    ,
    Dai Y
    ,
    Warner M
    ,
    Nalvarte I
    ,
    Antonson P
    , et al. Loss of ERbeta in aging LXRalphabeta knockout mice leads to colitis. Int J Mol Sci. 2023;24(
    15
    ):12461. DOI: 10.3390/ijms241512461. PMID: 37569842; PMCID: PMC10419301

  • 20.

    Sweed N
    ,
    Kim HJ
    ,
    Hultenby K
    ,
    Barros R
    ,
    Parini P
    ,
    Sancisi V
    , et al. Liver X receptor beta regulates bile volume and the expression of aquaporins and cystic fibrosis transmembrane conductance regulator in the gallbladder. Am J Physiol Gastrointest Liver Physiol. 2021;321(
    4
    ):G24351. DOI: 10.1152/ajpgi.00024.2021. PMID: 34259574; PMCID: PMC8815792

  • 21.

    Hellemans KH
    ,
    Hannaert JC
    ,
    Denys B
    ,
    Steffensen KR
    ,
    Raemdonck C
    ,
    Martens GA
    , et al. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase. PLoS One. 2009;4(
    9
    ):e7266. DOI: 10.1371/journal.pone.0007266. PMID: 19787047; PMCID: PMC2746288

  • 22.

    Song XY
    ,
    Wu WF
    ,
    Gabbi C
    ,
    Dai YB
    ,
    So M
    ,
    Chaurasiya SP
    , et al. Retinal and optic nerve degeneration in liver X receptor beta knockout mice. Proc Nat Acad Sci USA. 2019;116(
    33
    ):16507-12. DOI: 10.1073/pnas.1904719116. PMID: 31371497; PMCID: PMC6697819

  • 23.

    Song XY
    ,
    Wu WF
    ,
    Dai YB
    ,
    Xu HW
    ,
    Roman A
    ,
    Wang L
    , et al. Ablation of Liver X receptor beta in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res. 2022;422:108534. DOI: 10.1016/j.heares.2022.108534. PMID: 35623301

  • 24.

    Kainu T
    ,
    Kononen J
    ,
    Enmark E
    ,
    Gustafsson JA
    ,
    Pelto-Huikko M
    . Localization and ontogeny of the orphan receptor OR-1 in the rat brain. J Mol Neurosci. 1996;7(
    1
    ):2939. DOI: 10.1007/BF02736846. PMID: 8835780

  • 25.

    Fan X
    ,
    Kim HJ
    ,
    Bouton D
    ,
    Warner M
    ,
    Gustafsson JA
    . Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Nat Acad Sci USA. 2008;105(
    36
    ):1344550. DOI: 10.1073/pnas.0806974105. PMID: 18768805

  • 26.

    El-Hajjaji FZ
    ,
    Oumeddour A
    ,
    Pommier AJ
    ,
    Ouvrier A
    ,
    Viennois E
    ,
    Dufour J
    , et al. Liver X receptors, lipids and their reproductive secrets in the male. Biochim Biophys Acta. 2011;1812(
    8
    ):97481. DOI: 10.1016/j.bbadis.2011.02.004. PMID: 21334438

  • 27.

    Kim HJ
    ,
    Andersson LC
    ,
    Bouton D
    ,
    Warner M
    ,
    Gustafsson JA
    . Stromal growth and epithelial cell proliferation in ventral prostates of liver X receptor knockout mice. Proc Nat Acad Sci USA. 2009;106(
    2
    ):55863. DOI: 10.1073/pnas.0811295106. PMID: 19122149; PMCID: PMC2626742

  • 28.

    Steffensen KR
    ,
    Robertson K
    ,
    Gustafsson JA
    ,
    Andersen CY
    . Reduced fertility and inability of oocytes to resume meiosis in mice deficient of the Lxr genes. Mol Cell Endocrinol. 2006;256(
    1-2
    ):916. DOI: 10.1016/j.mce.2006.03.044. PMID: 16895745

  • 29.

    Whitfield M
    ,
    Ouvrier A
    ,
    Cadet R
    ,
    Damon-Soubeyrand C
    ,
    Guiton R
    ,
    Janny L
    , et al. Liver X receptors (LXRs) alpha and beta play distinct roles in the mouse epididymis. Biol Reprod. 2016;94(
    3
    ):55. DOI: 10.1095/biolreprod.115.133538. PMID: 26792941

  • 30.

    Kim HJ
    ,
    Fan X
    ,
    Gabbi C
    ,
    Yakimchuk K
    ,
    Parini P
    ,
    Warner M
    , et al. Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson's dementia. Proc Nat Acad Sci USA. 2008;105(
    6
    ):20949. DOI: 10.1073/pnas.0711599105. PMID: 18238900; PMCID: PMC2542868

  • 31.

    Andersson S
    ,
    Gustafsson N
    ,
    Warner M
    ,
    Gustafsson JA
    . Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Nat Acad Sci USA. 2005;102(
    10
    ):385762. DOI: 10.1073/pnas.0500634102. PMID: 15738425; PMCID: PMC553330

  • 32.

    Bigini P
    ,
    Steffensen KR
    ,
    Ferrario A
    ,
    Diomede L
    ,
    Ferrara G
    ,
    Barbera S
    , et al. Neuropathologic and biochemical changes during disease progression in liver X receptor beta−/− mice, a model of adult neuron disease. J Neuropathol Exp Neurol. 2010;69(
    6
    ):593605. DOI: 10.1097/NEN.0b013e3181df20e1. PMID: 20467332

  • 33.

    Mouzat K
    ,
    Chudinova A
    ,
    Polge A
    ,
    Kantar J
    ,
    Camu W
    ,
    Raoul C
    , et al. Regulation of brain cholesterol: what role do liver X receptors play in neurodegenerative diseases? Int J Mol Sci. 2019;20(
    16
    ):3858. DOI: 10.3390/ijms20163858. PMID: 31398791; PMCID: PMC6720493

  • 34.

    Alnaaim SA
    ,
    Al-Kuraishy HM
    ,
    Alexiou A
    ,
    Papadakis M
    ,
    Saad HM
    ,
    Batiha GE
    . Role of brain liver X receptor in parkinson's disease: hidden treasure and emerging opportunities. Mol Neurobiol. 2024;61(
    1
    ):34157. DOI: 10.1007/s12035-023-03561-y. PMID: 37606719; PMCID: PMC10791998

  • 35.

    Warner M
    ,
    Gustafsson JA
    . Estrogen receptor beta and liver X receptor beta: biology and therapeutic potential in CNS diseases. Mol Psychiatry. 2015;20(
    1
    ):1822. DOI: 10.1038/mp.2014.23. PMID: 24662928

  • 36.

    Mouzat K
    ,
    Raoul C
    ,
    Polge A
    ,
    Kantar J
    ,
    Camu W
    ,
    Lumbroso S
    . Liver X receptors: from cholesterol regulation to neuroprotection–a new barrier against neurodegeneration in amyotrophic lateral sclerosis? Cell Mol Life Sci. 2016;73(
    20
    ):38018. DOI: 10.1007/s00018-016-2330-y. PMID: 27510420; PMCID: PMC11108529

  • 37.

    Pineda-Torra I
    ,
    Siddique S
    ,
    Waddington KE
    ,
    Farrell R
    ,
    Jury EC
    . Disrupted lipid metabolism in multiple sclerosis: a role for liver X receptors? Front Endocrinol (Lausanne). 2021;12:639757. DOI: 10.3389/fendo.2021.639757. PMID: 33927692; PMCID: PMC8076792

  • 38.

    Peng Z
    ,
    Deng B
    ,
    Jia J
    ,
    Hou W
    ,
    Hu S
    ,
    Deng J
    , et al. Liver X receptor beta in the hippocampus: A potential novel target for the treatment of major depressive disorder? Neuropharmacology. 2018;135:51428. DOI: 10.1016/j.neuropharm.2018.04.014. PMID: 29654801

  • 39.

    Han S
    ,
    Yuan X
    ,
    Zhao F
    ,
    Manyande A
    ,
    Gao F
    ,
    Wang J
    , et al. Activation of LXRs alleviates neuropathic pain-induced cognitive dysfunction by modulation of microglia polarization and synaptic plasticity via PI3K/AKT pathway. Inflamm Res. 2024;73(
    2
    ):15774. DOI: 10.1007/s00011-023-01826-9. PMID: 38183431

  • 40.

    Bogie JFJ
    ,
    Vanmierlo T
    ,
    Vanmol J
    ,
    Timmermans S
    ,
    Mailleux J
    ,
    Nelissen K
    , et al. Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. J Autoimmun. 2021;124:102723. DOI: 10.1016/j.jaut.2021.102723. PMID: 34481107

  • 41.

    Qiu C
    ,
    Wang M
    ,
    Yu W
    ,
    Rong Z
    ,
    Zheng HS
    ,
    Sun T
    , et al. Activation of the hippocampal LXRbeta improves sleep-deprived cognitive impairment by inhibiting neuroinflammation. Mol Neurobiol. 2021;58(
    10
    ):527288. DOI: 10.1007/s12035-021-02446-2. PMID: 34278533

  • 42.

    Endo-Umeda K
    ,
    Kim E
    ,
    Thomas DG
    ,
    Liu W
    ,
    Dou H
    ,
    Yalcinkaya M
    , et al. Myeloid LXR (liver X receptor) deficiency induces inflammatory gene expression in foamy macrophages and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol. 2022;42(
    6
    ):71931. DOI: 10.1161/ATVBAHA.122.317583. PMID: 35477277; PMCID: PMC9162499

  • 43.

    Zhang R
    ,
    Dong Y
    ,
    Liu Y
    ,
    Moezzi D
    ,
    Ghorbani S
    ,
    Mirzaei R
    , et al. Enhanced liver X receptor signalling reduces brain injury and promotes tissue regeneration following experimental intracerebral haemorrhage: roles of microglia/macrophages. Stroke Vasc Neurol. 2023;8(
    6
    ):486502. DOI: 10.1136/svn-2023-002331. PMID: 37137522; PMCID: PMC10800269

  • 44.

    Xu X
    ,
    Xiao X
    ,
    Yan Y
    ,
    Zhang T
    . Activation of liver X receptors prevents emotional and cognitive dysfunction by suppressing microglial M1-polarization and restoring synaptic plasticity in the hippocampus of mice. Brain Behav Immun. 2021;94:11124. DOI: 10.1016/j.bbi.2021.02.026. PMID: 33662504

  • 45.

    Li J
    ,
    Zhu P
    ,
    Li Y
    ,
    Xiao K
    ,
    Tang J
    ,
    Liang X
    , et al. The liver X receptors agonist GW3965 attenuates depressive-like behaviors and suppresses microglial activation and neuroinflammation in hippocampal subregions in a mouse depression model. J Comp Neurol. 2022;530(
    16
    ):285267. DOI: 10.1002/cne.25380. PMID: 35758275

  • 46.

    Li C
    ,
    Wu H
    ,
    Na HST
    ,
    Wang L
    ,
    Zhong C
    ,
    Deng B
    , et al. Neuronal-microglial liver X receptor beta activating decrease neuroinflammation and chronic stress-induced depression-related behavior in mice. Brain Res. 2022;1797:148112. DOI: 10.1016/j.brainres.2022.148112. PMID: 36216100

  • 47.

    Li Y
    ,
    He X
    ,
    Zhang J
    ,
    Zhou Q
    ,
    Liu X
    ,
    Zhou G
    . Medicarpin improves depressive-like behaviors in a chronic unpredictable mild stress-induced mouse model of depression by upregulating liver X receptor beta expression in the amygdala. Neurotox Res. 2022;40(
    6
    ):193747. DOI: 10.1007/s12640-022-00610-7. PMID: 36445678

  • 48.

    Zhu P
    ,
    Tang J
    ,
    Liang X
    ,
    Luo Y
    ,
    Wang J
    ,
    Li Y
    , et al. Activation of liver X receptors protects oligodendrocytes in CA3 of stress-induced mice. Front Pharmacol. 2022;13:936045. DOI: 10.3389/fphar.2022.936045. PMID: 35959443; PMCID: PMC9358133

  • 49.

    Maas DA
    ,
    Martens MB
    ,
    Priovoulos N
    ,
    Zuure WA
    ,
    Homberg JR
    ,
    Nait-Oumesmar B
    , et al. Key role for lipids in cognitive symptoms of schizophrenia. Transl Psychiatry. 2020;10(
    1
    ):399. DOI: 10.1038/s41398-020-01084-x. PMID: 33184259; PMCID: PMC7665187

  • 50.

    Bandelow B
    ,
    Michaelis S
    . Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(
    3
    ):32735. DOI: 10.31887/DCNS.2015.17.3/bbandelow. PMID: 26487813; PMCID: PMC4610617

  • 51.

    Tan XJ
    ,
    Dai YB
    ,
    Wu WF
    ,
    Warner M
    ,
    Gustafsson JA
    . Anxiety in liver X receptor beta knockout female mice with loss of glutamic acid decarboxylase in ventromedial prefrontal cortex. Proc Nat Acad Sci USA. 2012;109(
    19
    ):74938. DOI: 10.1073/pnas.1205189109. PMID: 22529354; PMCID: PMC3358830

  • 52.

    Xu P
    ,
    Xu H
    ,
    Tang X
    ,
    Xu L
    ,
    Wang Y
    ,
    Guo L
    , et al. Liver X receptor beta is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry. 2014;19(
    8
    ):94757. DOI: 10.1038/mp.2014.60. PMID: 24934178

  • 53.

    Li X
    ,
    Zhong H
    ,
    Wang Z
    ,
    Xiao R
    ,
    Antonson P
    ,
    Liu T
    , et al. Loss of liver X receptor beta in astrocytes leads to anxiety-like behaviors via regulating synaptic transmission in the medial prefrontal cortex in mice. Mol Psychiatry. 2021;26(
    11
    ):638093. DOI: 10.1038/s41380-021-01139-5. PMID: 33963286

  • 54.

    Yu W
    ,
    Wang L
    ,
    Yang L
    ,
    Li YJ
    ,
    Wang M
    ,
    Qiu C
    , et al. Activation of LXRbeta signaling in the amygdala confers anxiolytic effects through rebalancing excitatory and inhibitory neurotransmission upon acute stress. Neurotherapeutics. 2020;17(
    3
    ):125370. DOI: 10.1007/s13311-020-00857-y. PMID: 32297184; PMCID: PMC7609627

  • 55.

    Cai Y
    ,
    Tang X
    ,
    Chen X
    ,
    Li X
    ,
    Wang Y
    ,
    Bao X
    , et al. Liver X receptor beta regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Nat Acad Sci USA. 2018;115(
    12
    ):E272533. DOI: 10.1073/pnas.1800184115. PMID: 29507213; PMCID: PMC5866608

  • 56.

    Cai Y
    ,
    Zhong H
    ,
    Li X
    ,
    Xiao R
    ,
    Wang L
    ,
    Fan X
    . The liver X receptor agonist TO901317 ameliorates behavioral deficits in two mouse models of autism. Front Cell Neurosci. 2019;13:213. DOI: 10.3389/fncel.2019.00213. PMID: 31139052; PMCID: PMC6527842

  • 57.

    Liu C
    ,
    Liu J
    ,
    Gong H
    ,
    Liu T
    ,
    Li X
    ,
    Fan X
    . Implication of hippocampal neurogenesis in autism spectrum disorder: pathogenesis and therapeutic implications. Curr Neuropharmacol. 2023;21(
    11
    ):226682. DOI: 10.2174/1570159X21666221220155455. PMID: 36545727; PMCID: PMC10556385

  • 58.

    Chen L
    ,
    Song D
    ,
    Chen B
    ,
    Yang X
    ,
    Cheng O
    . Activation of liver X receptor promotes hippocampal neurogenesis and improves long-term cognitive function recovery in acute cerebral ischemia-reperfusion mice. J Neurochem. 2020;154(
    2
    ):20517. DOI: 10.1111/jnc.14890. PMID: 31602646

  • 59.

    Sun T
    ,
    Li YJ
    ,
    Tian QQ
    ,
    Wu Q
    ,
    Feng D
    ,
    Xue Z
    , et al. Activation of liver X receptor beta-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Exp Neurol. 2018;304:219. DOI: 10.1016/j.expneurol.2018.02.006. PMID: 29447944

  • 60.

    Sacchetti P
    ,
    Sousa KM
    ,
    Hall AC
    ,
    Liste I
    ,
    Steffensen KR
    ,
    Theofilopoulos S
    , et al. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell. 2009;5(
    4
    ):40919. DOI: 10.1016/j.stem.2009.08.019. PMID: 19796621

  • 61.

    Theofilopoulos S
    ,
    Wang Y
    ,
    Kitambi SS
    ,
    Sacchetti P
    ,
    Sousa KM
    ,
    Bodin K
    , et al. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol. 2013;9(
    2
    ):12633. DOI: 10.1038/nchembio.1156. PMID: 23292650

  • 62.

    Theofilopoulos S
    ,
    Arenas E
    . Liver X receptors and cholesterol metabolism: role in ventral midbrain development and neurodegeneration. F1000Prime Rep. 2015;7:37. DOI: 10.12703/P7-37. PMID: 26097711; PMCID: PMC4447034

  • 63.

    Sandoval-Hernandez AG
    ,
    Hernandez HG
    ,
    Restrepo A
    ,
    Munoz JI
    ,
    Bayon GF
    ,
    Fernandez AF
    , et al. Liver X receptor agonist modifies the DNA methylation profile of synapse and neurogenesis-related genes in the triple transgenic mouse model of alzheimer's disease. J Mol Neurosci. 2016;58(
    2
    ):24353. DOI: 10.1007/s12031-015-0665-8. PMID: 26553261

  • 64.

    Theofilopoulos S
    ,
    Abreu de Oliveira WA
    ,
    Yang S
    ,
    Yutuc E
    ,
    Saeed A
    ,
    Abdel-Khalik J
    , et al. 24(S),25-Epoxycholesterol and cholesterol 24S-hydroxylase (CYP46A1) overexpression promote midbrain dopaminergic neurogenesis in vivo. J Biol Chem. 2019;294(
    11
    ):416976. DOI: 10.1074/jbc.RA118.005639. PMID: 30655290 PMCID: PMC6422085

  • 65.

    De La Fuente DC
    ,
    Tamburini C
    ,
    Stonelake E
    ,
    Andrews R
    ,
    Hall J
    ,
    Owen MJ
    , et al. Impaired oxysterol-liver X receptor signaling underlies aberrant cortical neurogenesis in a stem cell model of neurodevelopmental disorder. Cell Rep. 2024;43(
    3
    ):113946. DOI: 10.1016/j.celrep.2024.113946. PMID: 38483902

  • 66.

    Menteşe Babayiğit T
    ,
    Gümüş-Akay G
    ,
    Uytun
    ,
    Doğan Ö
    ,
    Serdar MA
    ,
    Efendi GY
    , et al. Investigation of liver X receptor gene variants and oxysterol dysregulation in autism spectrum disorder. Children. 2024;11(
    5
    ):551. DOI: 10.3390/children11050551. PMID: 38790546; PMCID: PMC11120122

  • Download PDF
Copyright: © The Author(s), 2024. This article is under exclusive and permanent license to Genomic Press

Contributor Notes

Corresponding Authors: Jan-Åke Gustafsson, E-mail: jgustafsson@uh.edu and Xiaoyu Song, E-mail: xsong7@central.uh.edu

Publisher's note: Genomic Press maintains a position of impartiality and neutrality regarding territorial assertions represented in published materials and affiliations of institutional nature. As such, we will use the affiliations provided by the authors, without editing them. Such use simply reflects what the authors submitted to us and it does not indicate that Genomic Press supports any type of territorial assertions.

Received: Aug 04, 2024
Accepted: Sep 28, 2024