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Psychedelic compounds have demonstrated remarkable therapeu-
tic potential for treating neuropsychiatric disorders by promoting
sustained neuroplasticity in the prefrontal cortex (PFC). Cognitive
flexibility—the ability to adapt previously learned rules to novel
situations—represents a critical PFC function that is frequently im-
paired in depression, PTSD, and neurodegenerative conditions. In
this study, we demonstrate that a single administration of the se-
lective serotonin 2A receptor agonist 25CN-NBOH produces signifi-
cant, long-lasting improvements in cognitive flexibility in both male
and female mice when measured 2–3 weeks posttreatment. Using a
novel automated sequential learning paradigm, psychedelic-treated
mice showed superior adaptability in rule reversal tasks compared
to saline controls, as evidenced by enhanced poke efficiency, higher
percentages of correct trials, and increased reward acquisition. These
behavioral findings complement existing cellular research showing
psychedelic-induced structural remodeling in the PFC and uniquely
demonstrate sustained cognitive benefits persisting weeks after a
single psychedelic dose. Our automated behavioral task provides a
high-throughput method for evaluating cognitive flexibility effects of
various psychedelic compounds, offering important implications for
therapeutic applications in conditions characterized by cognitive rigi-
dity, including depression, PTSD, and potentially Alzheimer’s disease.

Keywords: Cognitive flexibility, neuroplasticity, psychedelic therapy,
reversal learning, serotonin 2a receptor.

Introduction
Psychedelic drugs have been used to treat multiple neuropsychiatric dis-
orders, including major depressive disorder, posttraumatic stress disor-
der (PTSD), and substance use disorders (1–14). These neuropsychiatric
disorders are precipitated by chronic stress, which leads to both struc-
tural and functional changes in the prefrontal cortex (PFC) in humans and
rodents (15–22). The therapeutic potential of psychedelics may be due to
their ability to restore neural circuits damaged in these pathologies by
boosting synaptic activity (23–31).

The PFC contributes to the control of many cognitive functions, includ-
ing working memory, memory retrieval, decision-making, and executive
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function (32, 33). One key aspect of executive function is the ability to ap-
ply previously learned rules to novel situations, also known as cognitive
flexibility (33, 34). Flexibility disruptions are associated with neuropsy-
chiatric disorders, such as depression and PTSD, as well as neurodevel-
opmental and neurodegenerative disorders (34, 35). Cognitive flexibility
has been examined using tasks such as the Flanker Task, Stroop Task, and
the Wisconsin Card Sorting Task; however, these kinds of tasks are largely
limited to humans (36). In contrast, most cognitive flexibility tasks for ro-
dents can be classified as either attentional set-shifting paradigms, which
involve the learning of two separate rules and associated cues, or rever-
sal learning, which involves applying a learned rule to a reversed scenario
(37, 38). Reversal learning is an effective method for studying cognitive
flexibility in rodents, including mice (38–40). Reversal learning paradigms
can be extremely diverse, varying in the kind of tasks being taught to the
number and timing of reversals involved in the paradigm. These details
are critical when evaluating the existing literature’s examination of cog-
nitive flexibility through reversal learning.

25CN-NBOH is a psychedelic agent with high affinity and selectiv-
ity for the serotonin 2A (5-HT2A) receptor (41–43). It has demonstrated
psychedelic-like effects and is commonly used in the study of psychedelic
mechanisms in rodents (44–46). 25CN-NBOH has much stronger affin-
ity for 5-HT2A receptors (50–100x higher affinity) in comparison to the
closely related 5-HT2B and 5-HT2C receptors. Compared to 25CN-NBOH,
other psychedelic drugs have a lower ratio of 5-HT2A to 5-HT2B or 5-HT2C
affinity (47–49). As 5-HT2A receptor activation, specifically, has previously
been shown to be required for psychedelic-induced synaptogenesis that
might contribute to behavioral changes, this high affinity and high selec-
tivity 5-HT2A receptor agonist was chosen as the psychedelic drug for the
present study of psychedelic effects on cognitive flexibility.

As single psychedelic administrations promote structural changes in
the PFC that last for several weeks (24, 29, 31), here we asked whether
a single psychedelic administration could also induce a weeks-long en-
hancement of flexible learning ability in mice. We conducted a reversal
learning task in which female and male mice were administered a single
dose of a psychedelic drug or saline and found enhanced performance on
the reversal task which persists for at least 3 weeks after one psychedelic
dose

Results
To determine whether psychedelic treatment induces long-lasting
changes in flexible learning ability, we treated female and male mice
with a single dose of the selective serotonin 2A (5-HT2A) receptor ago-
nist 25CN-NBOH (41–45) or saline via intraperitoneal injection. Following
a waiting period of one day, light food restriction for 2 days, and 5 days
of training with the Feeding Experimentation Device version 3 (FED3) de-
vice, we utilized a forward sequence learning protocol (Figure 1A). Mice
learned to initiate a trial with a left poke and then had to poke right within
the subsequent 30 s to receive a food pellet (Figure 1B). Following 6 days
of 4 h/day forward protocol sessions, the required sequential poking pat-
tern was reversed. For another 6 days of 4-h sessions, mice were then re-
quired to poke right and then poke left within 30 s to receive the food
pellet (Figure 1C). This reversal of the experimental protocol is indicative
of flexible learning: we measured the degree to which a mouse is able to
adapt the previously learned 1 poke/hole sequence rule to a novel situa-
tion, which, in this case, was the reversed direction.

We found that psychedelic and saline-treated mice learned the for-
ward task at similar rates, as reflected by the poke efficiency, which repre-
sents the proportion of pellets dispensed out of all pokes (Figure 2A), and
the percentage of correct trials initiated out of all trials initiated (Figure
2B). While the change in forward learning poke efficiency and percent-
age correct was not affected by psychedelic treatment (poke efficiency:
saline R2 = 0.25, NBOH R2 = 0.20; F(1,557)=.1721, P = 0.6784; percent cor-
rect: saline R2 = 0.16, NBOH R2 = 0.13; F(1,431) = .7771, P = 0.3785), the
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Figure 1. Experimental timeline and overview. (A) Experimental timeline (65). (B) Schematic of the SEQFR2-forward protocol. Mice have to sequentially poke
left and then right within 30 s to earn a reward pellet. (C) Schematic of the SEQFR2-reversal protocol. Mice now are required to poke right and then left within
30 s to get a reward pellet.

NBOH-treated group accumulated more reward pellets than the saline
group (Figure 2C; saline: R2 = 0.18, NBOH: R2 = 0.27; F(1,620) = 7.513,
P = 0.0063), indicating an increased initiation of trials per hour with the
FED3 (Figure 2C), as the baseline and learning rates were similar between
groups (Supplemental Figure 1).

Importantly, during the reversal phase, measured 15–20 days after
the single injection, psychedelic treatment resulted in significantly in-
creased learning ability. This is indicated by the increased the efficiency
of nose pokes (Supplemental Figure 2; Figure 2D; saline: R2 = 0.11,
NBOH: R2 = 0.32; F(1,528) = 21.91, P < 0.0001), the percent correct tri-
als initiated (Figure 2E; saline: R2 = 0.11, NBOH: R2 = 0.23; F(1,401) =
6.629, P = 0.0104), and again by the higher total number of pellets ob-
tained (Figure 2F; saline: R2 = 0.10, NBOH: R2 = 0.37; F(1,620) = 20.74,
P < 0.0001).

We confirmed the robustness of these findings by conducting Welch’s
one-sided t-tests after calculating individual linear regression curves for
each animal, and found that NBOH-treated mice (poke efficiency: M =
0.036, SD = 0.026; percent correct: M = 0.084, SD = 0.052), relative to
saline treated mice (poke efficiency: M = 0.016, SD = 0.015; percent cor-
rect: M = 0.043, SD = 0.049) perform better on average in the rever-
sal phase (reversal poke efficiency: t(17.40) = 2.29, p = 0.017, Cohen’s
d = 0.928; reversal percent correct: t(22.92) = 2.07, p = 0.0252, Cohen’s
d = 0.814). This was consistent with the aforementioned results. Also
consistent with the above findings, the individual linear regression analy-
sis showed that there were no significant differences in both the forward
poke efficiency (t(22.58) = 0.380, p = 0.354, Cohen’s d = 0.152) and for-
ward percent correct (t(23.78)= −0.729, p = 0.763, Cohen’s d=-0.286)
metrics between NBOH (forward poke efficiency: M = 0.035, SD = 0.026;
percent correct: M = 0.049, SD = 0.050) and saline-treated mice (for-
ward poke efficiency: M = 0.031, SD = 0.026; percent correct: M = 0.063,
SD = 0.053).

Finally, we considered sex as a biological variable to determine
whether NBOH improved learning in both sexes. We found that, consis-

tent with our sex-independent results (Figure 2), NBOH treatment did not
affect poke efficiency during the forward phase (Female: F(1,334) = 0.986,
P = .322; Male: F(1,219) = 0.004, P = 0.952), but significantly enhanced
poke efficiency during the reversal phase (Figure 3; Female; F(1,319) = 16,
P < .0001; Male: F(1,205) = 8.3, P = 0.0044). Thus, psychedelic treatment
induced a weeks-long lasting enhancement of reversal learning in both
male and female mice. When comparing male and female poke efficiency,
we found that male mice treated with saline performed slightly better
than female mice in both the forward and reversal phases (P = .0011;
P = 0.0218), and male mice treated with NBOH performed better in the
reversal phase than female mice (P = 0.0206).

Discussion
This study sought to examine the effects of a single psychedelic dose
on flexible learning. We found that even 2–3 weeks after a single dose,
NBOH significantly enhanced reversal learning ability. Poke efficiency,
percentage of correct trials, and cumulative pellets dispensed were all im-
proved during the reversal phase in mice that received NBOH compared to
mice that received saline. Both male and female mice displayed improved
learning during the reversal phase with psychedelic treatment, highlight-
ing the therapeutic potential of psychedelic medicine to boost cognitive
flexibility in both sexes. The estrous cycle can influence cognitive flexibil-
ity performance in rodents (50). The task design utilized in our study (6
days for each of the forward and reversal phases) encompasses more than
the full length of a mouse estrous cycle (4–5 days) and the analysis metric
utilized here examines changes in the slope of learning across the full 6
days, thus calculating learning rates over the course of at least one full
estrous cycle. Future work will help to better understand the precise in-
fluence of estrous cycle on higher temporal resolution changes in reversal
learning properties.

This study contrasts with previous preclinical psychedelic reversal
learning studies in terms of drug administration timepoints (46, 51–54).
We administered the psychedelic or saline control 15 days before the

Research Report
Brouns et al.

https://doi.org/10.61373/pp025r.0002
2

PSYCHEDELICS
Genomic Press

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-04-22

https://pp.genomicpress.com
https://doi.org/10.61373/pp025r.0002


pp.genomicpress.com

Figure 2. Single-dose psychedelic treatment induces a lasting reversal learning enhancement. (A) Group forward phase poke efficiency, with no significant effect
of NBOH treatment. Each day has 4 points plotted corresponding to each hour of the 4-h per day sessions. (B) Group forward phase percentage of correct trials,
indicating no significant effect of NBOH treatment. (C) NBOH treatment significantly increased the number of reward pellets dispensed during the forward phase.
(D) NBOH treatment significantly increased poke efficiency during the reversal phase compared to saline injection, indicating enhanced cognitive flexibility. (E)
NBOH increases the percentage of correct trials. (F) NBOH treatment significantly increased the number of reward pellets dispensed during the reversal phase.
Shaded regions represent standard error of the mean (SEM), linear regressions shown in pink for NBOH and black for saline; ns, not significant; ∗∗p < 0.01;
∗∗∗∗p < 0.0001.

start of the reversal protocol. Thus, our study focuses on the longer-term
therapeutic effects of the psychedelic drug. It is important to distinguish
such longer-term effects from immediate or short-lasting acute effects,
that may be more related to the mind-altering impact of psychedelics
and not to their longer-term therapeutic effects. In a two-choice visual
discrimination task, 25CN-NBOH (1–2 mg/kg) was found to have no sig-
nificant effects on reversal learning in mice when administered acutely,
immediately before testing (46). Other previous rodent studies using at-
tentional set-shifting and T-maze paradigms found impairment of flexi-

ble learning with acute administration of the psychedelics DOI (1 mg/kg)
or 25CN-NBOH (1 mg/kg) on cognitive flexibility (53, 54). However, one
study found acutely enhanced cognitive flexibility with acute psilocybin
(1 mg/kg) in the same attentional set shifting paradigm that found im-
pairment following administration of DOI (54). The differences in the
acute effects of psychedelics on reversal learning may be due to the study
design, discussed below, as well as a combination of drug and dose. DOI
and 25CN-NBOH are much more potent (>10x) than psilocybin (41, 42,
47–49). Concentration-dependent acute suppression of working memory
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Figure 3. Lasting psychedelic enhancement of reversal learning ability in male and female mice. (Top) Forward and reversal phase changes to poke efficiency
indicating NBOH treatment significantly improves reversal learning in female mice weeks after a single dose. (Bottom) Forward and reversal phase changes to
poke efficiency in male mice indicating NBOH treatment significantly improves reversal learning weeks after a single dose. Shaded regions represent standard
error of the mean (SEM), linear regressions shown in pink for NBOH and black for saline; ns, not significant; ∗∗p < 0.01; ∗∗∗∗p < 0.0001.

(27, 55–57) likely explains why the relatively less potent psychedelic
psilocybin doesn’t acutely impair behavioral performance at this dose.
As the long-term effects of psychedelics on cognition are the effects
that are more relevant therapeutically, it is important that future work
continues to examine the sustained, in addition to acute, effects of
psychedelics.

The current study also contrasts with previous studies in protocol de-
sign. We selected a reversal learning paradigm that is sufficiently com-
plicated and somewhat easier to interpret compared to attentional set-
shifting or T-maze paradigms. Two recent studies have also made use of
reversal learning paradigms and have found long-term (study 1: 3 days;
study 2: 14 days) positive effects of psychedelics on cognitive flexibility
in female rats, but there are a few notable differences in behavioral pro-
tocols compared to the current study (51, 52). As opposed to conducting
a sequential FR2-style task with only one reversal of the task, the 14-day
long reversal study implemented an FR1 task that repeatedly reversed
every 10 successful trials (51). While this study demonstrated that psilo-
cybin increases the number of successes over time, it did not show if psilo-
cybin improves accuracy, or if this is a function of increased trial initia-
tions after psilocybin (51). Our FR2 style task with a single reversal after
many days of training highlights the different effects psychedelics have
on initial (forward) learning and reversal learning separately, which we

would have otherwise been unable to do in a paradigm that frequently
reverses. Our paradigm also likely results in fewer random successes that
could inflate an animal’s actual performance as we require precisely two
sequential pokes in two separate holes. In addition, we conducted the task
in both female and male mice. A similar study testing the long-term ef-
fects of DOI on reversal learning found that, depending on task structure,
DOI has mixed effects on reversal learning ability (58). A week-long eval-
uation of initial learning after dosing appeared to assist in the enhance-
ment of flexible learning, but if the animals were not exposed again to
the task prior to reversal after dosing, DOI appears to have a negative ef-
fect on reversal learning ability. This finding suggests that further work
needs to be done to evaluate what role practice following dosing has on
cognitive flexibility.

In humans, psilocybin treatment has been found to improve cognitive
flexibility up to 1 month after dosing (13, 14). However, these studies uti-
lized a within-subject repeated measures design with no non-psilocybin
control group (13), or with low dose psilocybin (1 mg) as the control group
(14). Although promising, it is possible that behavioral performance was
improved through familiarity with the task design rather than a direct re-
sult of the psychedelic treatment. It is currently unknown whether a single
psychedelic dose would improve cognitive flexibility measured in a human
study using independent measures.
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PFC neurons have been shown to undergo spinogenesis and synapto-
genesis after a single psychedelic administration through a pathway re-
quiring 5-HT2A receptor activation (23–31), but the precise mechanisms
of 5-HT2A receptor induced flexible learning and how long these benefits
can last are still unknown. Here, we use 25CN-NBOH, which is 50–100x
more selective for 5-HT2A receptors over 5-HT2B and 5-HT2C receptors
and has even weaker affinity for other 5-HT receptors (41, 42, 49). Future
research into the long-term effects of other psychedelic drugs on cogni-
tive flexibility will need to be conducted to examine whether psychedelics
that target additional 5-HT receptor subtypes have similar long-lasting
effects, or to determine whether the interaction with other 5-HT recep-
tors abolishes the ability to enhance long-lasting flexibility. In addition, it
remains unknown if non-hallucinogenic 5-HT2A receptor agonists such as
2-bromo-LSD, lisuride, and 6-fluoro-diethyltryptamine (59–61), are also
able to induce a lasting enhancement of flexible learning.

Psychedelic-mediated weeks-long enhancement of reversal learning
ability allows for many further directions of research. Future studies will
examine the effects that psychedelics have on mice across different ages.
Additional studies will also determine the effects of different psychedelic
drugs, dose levels, number of doses, or dose timing in this behavioral
paradigm. While we did find an enhancement in a mouse model of cog-
nitive flexibility with a 5-HT2A receptor agonist, we did not use 5-HT2A
knockout mice to see if the absence of 5-HT2A receptors would cause any
deficits in this behavior, or if psychedelics would improve this behavior
without the engagement of 5-HT2A receptors.

A long-term positive psychedelic-induced enhancement of cogni-
tive flexibility has several implications for future human psychedelic
medicine, specifically for pathologies that involve deficits in executive
function or synaptic loss. Cognitive flexibility is impaired in many disor-
ders, including depression, PTSD, and Alzheimer’s disease (AD) (62–64).
While clinical trials evaluating the impact of psychedelic medicine on
depression and PTSD are already underway and have shown promising
results (13, 14), psychedelics have not yet been used to try to treat
cognitive flexibility in AD and related neurodegenerative diseases. Addi-
tional research using mouse models of AD would be important to mech-
anistically demonstrate that psychedelics can indeed boost flexibility
in these models and to confirm that psychedelics can also boost long-
term synaptic activity in brain regions related to cognitive flexibility,
such as the PFC in these same preclinical models. The task design pre-
sented here will facilitate future studies that can address these and other
questions. This will allow for an even greater mechanistic understand-
ing of the relationship between psychedelic treatment and cognitive
flexibility.

Materials and Methods
Animals and Behavioral Apparatus
The open source, programmable FED3 device was used for all behavioral
experiments. We programmed the FED3 via Arduino to deliver a 10 mg
reward pellet if an animal successfully pressed the correct sequence of
nose poke holes (left-then-right or right-then-left within 30 s, depend-
ing on the forward or reversal phase of the task). The reward pellets used
in this study were 10 mg Bio-Serv Dustless Precision Pellets in the choco-
late flavor. The cages used with the FED3 devices were modified standard
mouse housing cages, with holes drilled into the front of the cage and
magnets affixed to the cage’s front to allow the animal to interact with
the reward well and nose poke holes and ensure the device stays flush to
the side of the cage during data collection. Data were collected within the
animals’ vivarium on a static shelf to minimize any effect of changing lo-
cations on stress and ensure ample room for both the cage and the device
on the shelf. Each animal had their own experimentation cage and FED3
used for the duration of the experiment to minimize the stress of unfamil-
iar environment and odors. The animals’ vivarium ran on a reversed light
cycle with lights off (dark phase) from 7:00 AM to 7:00 PM. Each day, data
were collected from approximately 10:00 AM to 2:00 PM, within the vi-
varium’s dark phase. After each 4-h session, the animals were returned to
their home cages until the next day. A total of 27 adult male and female
C57BL/6 mice with a mean age of ∼6 months were used in experiments,
but the data from one mouse were excluded because the mouse did not

interact with the FED3 device. All procedures were approved by the Uni-
versity of Michigan Committee on the Use and Care of Animals.

Procedure
Animals were injected intraperitoneally with either saline to function as a
control (N = 14), or 25CN-NBOH (N = 12 mice) a 5-HT2A receptor agonist,
purchased from Tocris Bioscience, at a dose of 10 mg/kg (a dose previ-
ously shown to induce psychedelic-like effects in mice (44)), dissolved in
sterile saline and brought up to a total volume less than 1% of the mouse
weight. To allow the blinding of the main experimenter, these injections
were done by another experimenter, and the main experimenter remained
blinded until after the protocol had been completed. After injection, the
animals were left to rest for 24 h in their home cage before beginning an
85% free feeding weight schedule for 2 days. During those 2 days, a few
reward pellets were dropped into each animal’s cage. This was done to
ensure proper food motivation and acclimation to the pellets.

After 2 days of food restriction, animals were introduced to a training
period to acclimatize to the FED3. After this point, most of the daily food
was obtained through the FED3 device; chow was added to home cages
supplementally as needed to maintain at least 85% free-feeding weight.
However, most mice returned to free-feeding weight over the course of
the full protocol. For 2 days, the animals underwent the habituation phase
of the protocol, in which the animals were introduced to the FED3 and
experimentation cages. Over the course of two separate 4-h sessions, the
FED3 automatically delivered a reward pellet every 4 min and in response
to any pokes to either nose poke hole. After the 2 days of habituation,
the animals began fixed-ratio 1 (FR1) training phase in which a reward
pellet would be delivered any time the mouse poked the left nose poke
hole. Similarly, these sessions were 4 h long each and took place over the
course of 3 days.

After the 5 days of training were completed, the mouse was then in-
troduced to the sequential fixed-ratio 2 (SEQFR2)-forward and SEQFR2-
reversal phases. To receive a reward pellet in the SEQFR2-forward phase,
the animal must poke the left nose poke hole followed by the right nose
poke hole within 30 s. Should the animal poke the right hole in isolation,
the left hole twice in a row, or not follow a left poke with a right poke, the
device entered a 10-s timeout phase in which no further pokes would be
registered and any nose pokes during this timeout period were ignored.
Like all other sessions, these sessions lasted for 4 h each over the course of
6 days. After those 6 days elapsed, the SEQFR2 rule was reversed, mean-
ing the animal had to poke the right nose poke hole first followed by the
left to receive a reward pellet. Like the forward phase, the reversal phase
lasted for 6 days. After the protocol was completed, mice were returned
to their normal feeding schedules, cages were cleaned and sanitized
with Liquinox lab detergent, and FED3s were sanitized with 70% ethanol.
The experimental timeline and protocol overviews are summarized in
Figure 1.

Behavioral Analysis
In the SEQFR2 task, poke efficiency is the main measure of performance.
This was calculated by finding the proportion of pellets dispensed out of
all pokes carried out by the animal in each hour. As additional metrics
of behavioral performance, we examined cumulative pellets dispensed
over the course of each phase, as well as the proportion of correct trials
initiated out of all trials (“percent correct”). Together, these three met-
rics reflect the absolute performance animals over the course of the task
(cumulative pellets), as well performance relative to the amount of en-
gagement with the device (poke efficiency and percent correct).

Statistics
Statistical procedures were performed with Prism GraphPad (version
10.3.0) and R. We conducted multiple linear regression analyses as our
primary statistical method, which has also been used as the analysis
method in other reversal learning paradigms (66–68). To ensure the ro-
bustness of our results, we conducted additional analyses by calculating
each individual animal’s regression curve and conducting Welch’s one-
sided t-tests to compare the saline and NBOH cohorts. Further statistical
test information and significance are provided in the results section and
figure legends.
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Data Availability
Data generated in this study is available from the corresponding author
upon reasonable request.
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