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Prader-Willi syndrome: Genetics, clinical symptoms, and model systems
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Prader-Willi syndrome (PWS) is a complex neurodevelopmental genetic disorder caused by the absence of paternal gene expression within the
PWS critical region (15q11-q13) on chromosome 15. The loss of gene function can result from deletion, maternal uniparental disomy, or
imprinting center defects. Occurring equally in both sexes, PWS is characterized by a spectrum of physical, behavioral, and cognitive symptoms,
including hyperphagia and obesity, and presents with various co-occurring psychiatric conditions such as autism spectrum disorder (ASD) and
psychotic spectrum disorders (PSD). Approximately 12%–40% of individuals with PWS meet the criteria for ASD, while a smaller subset, around
10%–30%, may develop PSD in late adolescence or adulthood. The treatment of PWS typically involves a multidisciplinary approach, including
behavioral interventions to manage hyperphagia, growth hormone therapy to address its deficiency, and pharmacological treatments for
psychiatric symptoms. Additionally, there is growing interest in genetic and molecular therapies as potential future interventions. By
integrating clinical, neurobiological, and genetic findings, this review highlights the implications of PWS for understanding co-occurring
development, psychiatric disorders, and therapeutic potential through new intervention models.
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Introduction
Prader-Willi syndrome (PWS) is a rare and complex neurodevelopmental
disorder caused by abnormalities in the 15q11-q13 chromosomal region.
It arises mainly from the loss of paternal gene expression within the
affected chromosomal region. This affects the endocrine, cognitive, and
neurologic systems and metabolism, resulting in distinctive physical and
behavioral traits (1, 2). First described by Prader et al. (3) PWS is char-
acterized by hyperphagia, hormonal imbalances, sensory abnormalities,
and cognitive and behavioral challenges. PWS occurs equally in males and
females and is observed across all ethnic groups (4, 5). PWS prevalence
varies considerably depending on the region, country, and time of assess-
ment. Epidemiological studies report prevalence estimates ranging from
approximately 1 in 16,062 to 1 in 76,574, with a 95% confidence interval
estimated between 1 in 19,064 and 1 in 68,901 (6–11).

This review explores the genetic, clinical, and neurobiological
aspects of PWS, emphasizing its significance as a framework for under-
standing the interplay between autism spectrum disorder (ASD) and
psychotic spectrum disorders (PSD). In this study, we have discussed the
genetic underpinnings of PWS, the implications of various subtypes, and
the neurodevelopmental and psychiatric presentations associated with
the syndrome. Furthermore, we reviewed neuroimaging findings, provid-
ing insights into altered brain network connectivity and its implications
for psychiatric comorbidities. Finally, we emphasized the prospective
utility of patient-derived neuronal models, including induced pluripotent
stem cells (iPSCs), in enhancing our understanding of the pathophysiol-
ogy of ASD and PSD and their putative relationship from the perspective
of PWS. Finally, we have evaluated emerging therapeutic strategies aimed
at targeting the genetic and neurobiological mechanisms underlying the
disorder.

Clinical Characteristics
PWS is marked by distinct clinical features that usually appear at birth
or in early childhood. Key characteristics include almond-shaped eyes, a
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small chin, hypotonia (reduced muscle tone), and short stature, all con-
tributing to the disorder’s recognizable clinical presentation. Hypotonia is
particularly noticeable in infancy and negatively impacts motor develop-
ment. It can delay the achievement of developmental milestones like sit-
ting up, crawling, and walking. Additionally, decreased muscle tone may
affect respiratory muscles, resulting in breathing difficulties for some
individuals (12–14). Craniofacial dysmorphisms—thought to arise from
neural crest cell development disruptions affecting the skull’s structure
and facial features (15)—are commonly observed in individuals with PWS
and may include a narrow forehead, downturned mouth, and other subtle
facial features that help diagnose the syndrome (16).

Hyperphagia, an insatiable appetite, is another PWS hallmark strongly
linked to the syndrome’s genetic origins. PWS is considered the most
known genetic cause of morbid obesity in children, with an annual mor-
tality rate of 1%–4%, mainly due to complications from hyperphagia and
obesity-related causes (17–19). The prevalence of overweight and obe-
sity in PWS is approximately 40% in children and adolescents (20), while
this percentage increases to between 80% and 90% in adulthood (21,
22). While the exact mechanism remains unclear, the development of
obesity is mainly linked to dysfunction in the feeding center of the hy-
pothalamus and its hormones, leading to unregulated food intake and
modified energy expenditure (23). Additionally, a reduction in thyroid
hormone contributes to changes in metabolic rate and energy consump-
tion (24), making individuals with PWS more susceptible to developing
obesity as they age. The 15q11-q13 region, which contains paternally
expressed genes, is critical in regulating metabolism and appetite con-
trol. The loss of these genes, either through deletion (DEL), maternal uni-
parental disomy (mUPD), or other genetic anomalies, disrupts these pro-
cesses and predisposes individuals with PWS to overeating and obesity
(25). Given these metabolic and appetite-regulating impairments, strict
dietary restrictions, careful supervision during meals, and sometimes the
use of medications such as topiramate are necessary to help manage PWS
obesity-related risks (26, 27).
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Figure 1. An illustration of the three main genetic mechanisms that result in PWS: (A) paternal deletion (DEL) of the 15q11-q13 region; (B) maternal uniparental
disomy (mUPD), which leads to two maternal copies of chromosome 15; and (C) Imprinting Center Defects (ICDs) affecting the regulation of gene expression in
the 15q11-q13 region. The diagram illustrates the inheritance patterns that lead to each genetic subtype contributing to the characteristic PWS phenotypes.

Individuals diagnosed with PWS frequently encounter diminished fer-
tility attributed to hypogonadism, which is a medical condition where
the gonads, namely the testes or ovaries, are unable to produce the req-
uisite hormones essential for sexual maturation and reproductive capa-
bility. This condition may lead to delayed onset of puberty, infertility,
and, in numerous instances, a total lack of reproductive function (28–30).
This aspect of PWS complicates not only reproductive health but also the
psychosocial development of affected individuals as they navigate chal-
lenges related to sexual maturity and identity (16).

Cognitive impairments in individuals with PWS are evident, including a
low IQ relative to the family background and, particularly, difficulties with
abstract concepts and comprehension (31). Additionally, social cognition
is often impaired, and peer relationships may be poor or nonexistent, re-
flecting traits like those associated with ASD (31). Individuals frequently
face developmental delays that affect language acquisition, motor skills,
and adaptive behavior (32). Traits comparable to ASD, such as restricted
or repetitive behaviors, deficits in language quality, imagination, and so-
cial communication and interaction, are also common (33). Many individ-
uals struggle to interpret social cues and engage in everyday social inter-
actions, which can lead to social isolation and frustration and the inten-
sification of emotional and behavioral difficulties (31–34).

A significant concern for individuals with PWS is the increased risk
of psychotic disorders, mainly linked to mUPD of chromosome 15 (12,
35). Studies indicate that 12% to 40% of individuals with PWS exhibit
behaviors overlapping with ASD, such as social communication difficul-
ties and repetitive behaviors (36, 37). Psychosis, including schizophrenia
spectrum disorders—characterized by symptoms such as delusions and
hallucinations—typically emerge during adolescence or early adulthood
and is observed in approximately 11%–33% of individuals (35, 38–40).

Compulsive behaviors such as skin picking, tantrums, and irritability
are commonly observed alongside these challenges (41, 42). These behav-
iors are usually resistant to traditional behavioral interventions and may
be exacerbated by underlying psychiatric symptoms. The comorbidity of

ASD or schizophrenia (SCZ) in some individuals with PWS further compli-
cates their behavioral phenotype. In such cases, psychiatric symptoms—
including anxiety, obsessive-compulsive behaviors, and hallucinations—
may emerge alongside the core features of PWS, necessitating integrated
care strategies to address both the neurodevelopmental and psychiatric
aspects of the disorder (13, 22, 40, 43).

These clinical characteristics profoundly influence the daily life and
overall quality of life for individuals with PWS. Addressing these fea-
tures requires multidisciplinary approaches, including genetic counsel-
ing, growth hormone (GH) therapy to address short stature, nutritional
interventions to prevent obesity, and hormonal treatments for fertility
concerns.

Genetic Characteristics
PWS results from the loss of function of genes located on chromosome
15, particularly within the 15q11-q13 region. PWS arises due to the lack
of paternal expression of genes in the 15q11-q13 PWS critical region
(as shown in Figure 1), where the maternal copy of this region is normally
imprinted (silenced) through epigenetic mechanisms, and the paternal
copy is expressed (3, 44). The absence of paternally expressed genes can
result from three different molecular mechanisms:

1. De novo DEL of the paternal 15q11-q13 region accounts for approxi-
mately 65%–75 % of cases. Rarely, deletion may occur through an un-
balanced translocation, where the 15q11.2-q13 region detaches and
attaches to another chromosome (45–50).

2. mUPD occurs in about 20%–30% of PWS cases. This mechanism oc-
curs when individuals inherit two copies of chromosome 15 from their
mother, thus lacking any paternal gene contributions to the 15q11-
q13 region (45–50).

3. Imprinting center defects (ICD) constitute 1%–4% of cases of PWS and
typically involve mutations or microdeletions within this critical chro-
mosomal region (48–50).
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Figure 2. An illustration of the genetic and expression map of the PWS critical region (15q11-q13). This figure illustrates the genomic structure of the PWS
critical region on chromosome 15, showing the location of key genes with paternal (blue), maternal (red), and biparental (teal) expression patterns. Breakpoints
BP1, BP2, and BP3 define the boundaries for type I and type II DEL, which differ in the extent of genetic material loss and associated phenotypic outcomes. Type I
deletions (BP1-BP3) involve a larger DEL of approximately 6.58 Mb, encompassing genes such as NIPA1, NIPA2, CYFIP1, and TUBGCP5, associated with more
pronounced neuropsychiatric symptoms. Type II DEL (BP2-BP3) is smaller, approximately 5.33 Mb, and affects genes important for neurodevelopment, such
as MAGEL2 and NDN. The location of SNORD116 is also indicated. Both deletion types include the UBE3A gene, implicated in Angelman syndrome (AS)—(not
discussed here), highlighting the complex interplay of genetic factors influencing the unique phenotypic features of PWS.

These genetic mechanisms shape the complex relationship between
genotype and phenotype in PWS—DEL, mUPD, and ICD—each contribut-
ing to distinct neurodevelopmental and psychiatric profiles. These mech-
anisms all arise from a normal paternal gene expression disruption within
the crucial 15q11-q13 region on chromosome 15 (16, 25). In the upcom-
ing sections, we take a closer look at each subtype individually, high-
lighting the molecular basis and the clinical implications of their unique
differences.

Genetic Subtypes and their Related Phenotypes: Deletions (DEL). The
PWS region is demarcated by three breakpoints (BP1, BP2, and BP3)
that define the two major deletion subtypes illustrated in Figure 2.
Type I DEL, spanning from BP1 to BP3 (approximately 6.58 Mb), re-
sults in the loss of a significant amount of genetic material. It is as-
sociated with more pronounced neuropsychiatric deficits, including in-
creased anxiety, behavioral challenges, and cognitive impairments (25).
The deletion also encompasses genes within the BP1-BP2 region, such as
CYFIP1, which has been linked to disruptions in the excitatory/inhibitory
balance of neuronal circuits and increased risk for ASD and SCZ (25,
51, 52). The significance of this region is further highlighted by the co-
occurrence of traits from Burnside-Butler syndrome in some patients with
PWS (53, 54).

Conversely, type II DEL (BP2-BP3), which spans approximately 5.33 Mb,
is generally associated with less severe phenotypic consequences than
type I DEL (16, 55). However, recent research indicates that individuals
with type II DEL can still present with distinct cognitive and social impair-
ments that differ in nature from those observed in type I cases (25, 31).
This underscores the nuanced influence of genetic deletions on neurode-
velopmental outcomes. The critical genes situated between BP2 and BP3

are essential for neurodevelopmental processes, and their loss can con-
tribute to hallmark features of PWS, including hypotonia, hyperphagia,
and cognitive impairments (16, 55).

The phenotypic differences between type I and type II DEL in PWS un-
derscore the genetic complexity of the syndrome. Individuals with the
more significant type I DEL tend to exhibit increased compulsiveness but
also experience more severe behavioral and psychiatric challenges com-
pared to those with the smaller type II DEL (44, 56). Studies have shown
that individuals with type I DEL generally have more behavioral and psy-
chological problems, including higher physical depression scores, than
those with type II DEL (56). Moreover, although both types of deletions
lead to neurodevelopmental impairments, type I DEL appears to be as-
sociated with more pronounced psychiatric symptoms, including a higher
prevalence of ASD and PSD, whereas type II DEL is associated with a dis-
tinct cognitive-behavioral profile (34, 44, 57–59).

While deletions account for the majority of PWS cases and are fre-
quently linked to more pronounced physical and behavioral symptoms, a
growing body of research has drawn attention to mUPD, a distinct subtype
with a different clinical and psychiatric profile.

Genetic Subtypes and their Related Phenotypes: mUPD. Beyond DEL
subtypes, a more extensive genotype-phenotype correlation further dis-
tinguishes PWS individuals with DEL and mUPD. Individuals with mUPD
tend to exhibit distinct clinical features and implications compared to
their DEL counterparts. Notably, research has shown that individuals with
mUPD have a higher prevalence of PSDs, including SCZ, as well as in-
creased anxiety and mood disorders. This may arise from the absence
of paternal gene expression crucial for neurodevelopment (12, 35, 37).
In contrast, individuals with DEL are often more prone to compulsive
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Table 1. Genetic mechanisms and clinical features in PWS

Genetic mechanism Subtype Key genes Clinical features Psychiatric risks

DEL (65%–75%) (48–50) Type I (BP1-BP3) MAGEL2, MKRN3, NDN Severe hypotonia, hyperphagia,
and a tendency toward obesity

Increased risk for ASD (13);
SCZ (16)

CYFIP1 DEL linked to ASD-PSD
comorbidity (51)

Type II (BP2-BP3) MAGEL2, NDN Hypotonia, hyperphagia, and a
tendency toward obesity—less
severe phenotype compared to
Type I DEL

Moderate risk for ASD (16);
SCZ (60)

mUPD (20%–30%) (48–50) ___ MKRN3, SNORD Cognitive impairment, psychiatric
symptoms

High risk of SCZ (35)

ICD (1%–4%) (48–50) ___ SNORD, SNURF-SNRPN Variable clinical presentation ASD (60); SCZ (35, 148)

Abbreviations: ASD, autism spectrum disorder; DEL, deletion; ICD, imprinting center defect; mUPD, maternal uniparental disomy; PWS, Prader-Willi
syndrome; SCZ, schizophrenia.

behaviors, aggression, and self-injury, highlighting the differing behav-
ioral implications associated with these genetic subtypes (12, 56, 61–63).

A significant finding is that postterm deliveries (>42 weeks) are more
common in mUPD cases compared to DEL cases, potentially pointing to
unique prenatal and postnatal developmental pathways influenced by
the absence of paternal alleles (64). Moreover, individuals with DEL char-
acteristically experience frequent feeding difficulties, early-onset hyper-
phagia, and obesity, with neonatal hypotonia leading to prolonged hos-
pitalization. In contrast, patients with mUPD often demonstrate slightly
better verbal skills and notably higher verbal IQ scores than DEL subjects
(69.9 vs. 60.8, respectively) despite a significantly higher incidence of co-
occurring ASD and social communication difficulties (33, 65, 66).

Furthermore, endocrine differences also emerge between these geno-
types, as patients with mUPD exhibit more significant GH deficiencies
but often respond better to recombinant human growth hormone (rhGH)
therapy. However, this treatment can sometimes be associated with in-
creased anxiety and delusions in PWS individuals (49).

Finally, from a physical perspective, patients with DEL exhibit more
pronounced PWS-related features, such as skin hypopigmentation and
distinct facial characteristics, whereas individuals with mUPD are less
likely to present with these traits (16). Additional complications, such as
scoliosis, hypothyroidism, type 2 diabetes, and sleep-disordered breath-
ing, further highlight the complexity of PWS across different genetic sub-
types (67–69). Despite these variations, mortality rates have been found
to be similar across the various genetic subtypes of PWS, indicating that
the underlying genetic mechanisms still converge on core aspects of the
disorder (17).

While mUPD diverges from the DEL subtype in its risk for psychiatric
features, a third and less common subtype—ICDs—adds further complex-
ity by disrupting epigenetic regulation.

Genetic Subtypes and their Related Phenotypes: ICDs. ICDs often mimic
features of both DEL and mUPD but originate from distinct mechanisms
that disrupt the regulation of gene expression on the paternal allele of
chromosome 15, within the PWS critical region. ICDs such as microdele-
tions and epimutations (incorrect methylation patterns), which can be
either inherited or acquired, may lead to PWS in approximately 1%–4%
of patients who exhibit biparental allele inheritance but a maternal-only
DNA methylation pattern (16, 70, 71). The imprinting center features a
bipartite structure comprising two critical regions: a PWS-imprinting cen-
ter (PWS-IC), a 4.3-kb sequence that includes the SNRPN promoter/exon
1, and an Angelman syndrome-imprinting center (AS-IC), an 880-bp se-
quence located 35 kb upstream (72). Both the PWS and the AS-ICs co-
operate intricately in regulating the epigenetic status and allele-specific
gene expression within the 15q11q13 chromosomal region (73).

The findings (summarized in Tables 1 and 2) underscore the notion
that PWS is not a singular genetic disorder but rather a spectrum of neu-
rodevelopmental syndromes influenced by various genetic mechanisms.

The precise relationships between genotype and phenotype remain an ac-
tive research area, with emerging evidence indicating that even within
the same genetic subtype, epigenetic modifications and environmental
factors may further refine phenotypic outcomes. A comprehensive under-
standing of these complex relationships is essential for the development
of tailored clinical management strategies, which could improve the qual-
ity of care and outcomes for individuals diagnosed with PWS (12, 16, 25).

Key Genes
The genetic basis of PWS is primarily linked to the loss of function of sev-
eral crucial genes located in the 15q11-q13 chromosomal region. How-
ever, nearly all genetic abnormalities associated with PWS, including DEL,
mUPD, and ICD, are not exclusively linked to specific symptoms of the dis-
order (74). This region harbors multiple paternally expressed genes es-
sential for neurodevelopment, metabolism, and endocrine function. The
absence of paternal expression of key genes, including MAGEL2, NDN,
MKRN3, and SNURF-SNRPN (as shown in Figure 2), contributes to the
hallmark features of PWS, such as hypotonia, hyperphagia, growth defi-
ciencies, and cognitive impairments (13). While the primary genetic dis-
ruptions in PWS occur within the 15q11-q13 chromosomal region, other
genes, such as CYFIP1, located in the neighboring chromosomal area, also
warrant examination (75), given its link to commonly co-occurring condi-
tions, specifically ASD and SCZ. Understanding the specific roles of these
genes is essential for elucidating the molecular mechanisms underpin-
ning PWS and developing targeted therapeutic strategies.

Following this overview of PWS genetic subtypes, key genes positioned
within or adjacent to the 15q11-q13 region are examined for their contri-
butions to the phenotypic complexity of the syndrome. These genes exert
influence over neurodevelopmental, metabolic, and psychiatric domains
through diverse molecular mechanisms. The subsequent sections focus
on the most well-characterized genes, beginning with MAGEL2 (as sum-
marized in Table 3).

MAGE Family Member L2 (MAGEL2). MAGEL2 is a maternally imprinted
gene involved in cellular processes such as endosomal protein recy-
cling and the production of secretory granules (76, 77). The loss of
MAGEL2 leads to a decrease in neuropeptide production and a reduc-
tion in the abundance of secretory granules in the hypothalamus, which
may contribute to the symptoms of PWS (77). MAGEL2 is vital for nor-
mal hypothalamic-pituitary function, and disruptions in its expression
can result in metabolic and behavioral abnormalities commonly associ-
ated with PWS (78). Evidence also implicates MAGEL2 in neuronal con-
nectivity, regulating circadian rhythms and sleep-wake cycles (76, 78–
80). Knockout mouse models lacking functional MAGEL2 exhibit sig-
nificant deficits in social interaction, impaired synaptic plasticity, and
disruptions in oxytocinergic signaling, mirroring findings observed in
patients with PWS (81–83). These results imply that the absence of
MAGEL2 disrupts neurodevelopmental pathways involved in social cog-
nition, reinforcing its significance in the psychiatric manifestations
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Table 2. Genotype-phenotype comparison of PWS subtypes across clinical, neurodevelopmental, and psychiatric features

Domain DEL mUPD ICD

Clinical features Most common subtype (∼65%–75%)
(45–50). More pronounced
physical dysmorphisms (e.g.,
almond eyes, narrow forehead,
pigmentation) (16).

Frequent hypotonia and feeding
difficulties in infancy (64)

∼20%–30% of cases (45–50)
Fewer physical traits (16)
More frequent postterm births

(>42 weeks) (64)

∼1%–4% of cases (48–50)
Clinical presentation overlaps with

DEL and mUPD depending on
methylation defect (16, 70, 71)

Neurodevelopmental
features

Lower verbal IQ (60.8) (65)
Greater compulsivity and cognitive

rigidity (12, 56, 61–63)
ASD traits especially with type I

deletions including CYFIP1 (25,
51)

Higher verbal IQ (69.9) (65)
More pronounced social

communication impairments (33,
65, 66). Greater risk of ASD than
DEL (33, 65)

May disrupt hypothalamic and
oxytocinergic development
(88–90)

Neurodevelopmental profiles are
less well characterized (16, 70)

Psychiatric features Lower risk of SCZ (35, 38–40)
Common behavioral issues:

aggression, tantrums, skin picking
(12, 56, 61–63)

Elevated risk of SCZ and psychosis
(delusions, hallucinations) (12,
35, 37). More anxiety and mood
disorders (37)

Psychiatric symptoms may mirror
mUPD due to similar loss of
paternal expression (44, 178).

Linked to SCZ-like features (44)

Abbreviations: DEL, deletion; ICDs, imprinting center defects; mUPD, maternal uniparental disomy; PWS, Prader-Willi syndrome.

associated with PWS. In light of these findings, MAGEL2 emerges as a
pivotal target for future therapeutic interventions, with efforts underway
to restore its function to ameliorate associated behavioral and cognitive
impairments (84, 85).

Necdin (NDN). NDN represents a pivotal paternally expressed gene that
plays significant roles in neuronal survival, differentiation, and the reg-
ulation of apoptosis (86). It plays a crucial role in maintaining neu-
ronal integrity by inhibiting programmed cell death during neurodevel-
opment. Evidence from animal models indicates that NDN suppresses
E2F1-mediated transcription of proapoptotic genes like CDC2, thereby

attenuating neuronal apoptosis (87). Mouse models of PWS reveal that
the loss of NDN expression correlates with increased neuronal death in
the hypothalamus, aligning with the metabolic and behavioral deficits
commonly observed in patients with PWS (13).

Beyond its role in apoptosis, NDN is involved in hypothalamic func-
tions, affecting essential biological processes like feeding behavior,
thermoregulation, and respiratory control. It is vital for developing
gonadotropin-releasing hormone (GnRH) neurons, as it promotes GnRH
transcription and facilitates axonal extension toward the median emi-
nence (88). Animal studies further highlight its role in hypothalamic func-
tionality, showing that NDN-deficient mice exhibit a reduction in oxytocin

Table 3. Location, function, and associated phenotypes of key genes within the genomic locus 15q11-q13 implicated in PWS

Key gene Location Function Associated phenotypes Gene-phenotype
strength of
association

MAGEL2 15q11-q13 Endosomal protein recycling (76, 77),
hypothalamic-pituitary function
(78), hypothalamic regulation, and
neuronal connectivity (76, 78–80)

ASD, cognitive impairments (81–83),
metabolic dysregulation (81–83),
and altered sleep-wake cycles (76)

Strong

MKRN3 15q11-q13 Pubertal regulation (96),
tagging proteins with
ubiquitin—prevent premature GnRH
release (98, 99)

Abnormal puberty timing (16, 100) Moderate

NDN 15q11-q13 Neuronal apoptosis regulation (86),
hypothalamic function (88)

Irregular breathing, severe apneas, and
psychiatric symptoms (90, 91). ASD
(balance between ASD and PSD),
cognitive impairments (14, 16, 90)

Moderate

SNURF-SNRPN 15q11-q13 RNA processing (101), encoding
bicistronic transcription (102)

Neurodevelopmental impairments and
ASD features (105–107)

Strong

SNORD 15q11-q13 Gene expression regulation, neural
differentiation, and development
(111)

Learning and memory cognitive (116),
infantile hypotonia, early-onset
obesity, and hypogonadism
(113–115)

Strong

CYFIP1 15q11.2 BP1-BP2 Excitation\Inhibition balance (51, 55),
synaptic regulation,
controlling cytoskeletal dynamics
and protein translation (118–120)

ASD, SCZ (51, 55). Frontostriatal
dysfunction (55). Altered food
consumption (126). Cognitive
impairments, repetitive behaviors,
and social cognition deficits (58)

Moderate-Strong
(Strong for ASD/SCZ,

Moderate for
PWS-specific traits)

Invited Expert Review
Saade et al.

https://doi.org/10.61373/gp025i.0044
5 of 21

GENOMIC PSYCHIATRY
Genomic Press

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-05-21 via O
pen Access. C

C
 BY-N

C
-N

D
 4.0. https://creativecom

m
ons.org/licenses/by-nc-nd/4.0/

https://gp.genomicpress.com
https://doi.org/10.61373/gp025i.0044


gp.genomicpress.com

and luteinizing hormone-releasing hormone (LHRH)-producing neurons,
which may contribute to the behavioral and endocrine deficit character-
istics of PWS (89). Disruptions in NDN expression have also been asso-
ciated with cognitive deficits, irregular breathing, severe apneas, abnor-
mal serotonin levels, mirroring respiratory disturbances, and psychiatric
symptoms observed in individuals with PWS (90, 91). Moreover, NDN de-
ficiency is associated with reduced firing activity of locus coeruleus nora-
drenergic neurons, potentially contributing to the symptoms observed in
PWS, such as central apnea and pronounced stress responses (92).

Makorin Ring Finger Protein 3 (MKRN3). The expression of MKRN3 is
influenced by the PWS-IC, which is thought to mediate allele-specific
interactions, potentially through transcription factors such as nuclear
respiratory factors (NRFs) and YY1 (93). Its regulation involves com-
plex mechanisms, including DNA methylation, with a differentially methy-
lated region identified in its 5’ untranslated region, as shown in studies
involving cattle (94).

The MKRN3 gene plays a crucial role in regulating pubertal on-
set by inhibiting GnRH secretion. Loss-of-function mutations in MKRN3
are the most common genetic cause of central precocious puberty (95,
96). MKRN3 exhibits a progressive decline in expression as puberty ap-
proaches, highlighting its essential role in the reproductive axis (97).
The functional role of the MKRN3 protein, while still being elucidated, is
believed to relate to the ubiquitin-proteasome system, a key cellular
mechanism for degrading unwanted proteins (98). This system operates
by tagging proteins with ubiquitin, signaling them for degradation. It is
hypothesized that MKRN3 attaches ubiquitin to proteins that could other-
wise trigger premature GnRH release (99). By facilitating the destruction
of these proteins, MKRN3 plays an essential role in ensuring that puberty
commences at the appropriate time (98).

In the context of PWS, evidence suggests that individuals with PWS
frequently experience atypical puberty timing, which correlates with hy-
pothalamic abnormalities. Cassidy et al. (16) highlight that inadequate
expression of MKRN3 can disrupt the hypothalamic-pituitary-gonadal
axis, leading to pubertal disruptions in PWS. Despite MKRN3’s recognized
significance, there is a notable scarcity of direct functional studies on its
mechanisms in PWS. However, evidence indicates that MKRN3 may serve
as a critical regulator, impacting not only reproductive maturation but
broader neurodevelopmental aspects associated with PWS (16, 100).

SNURF-SNRPN. The SNURF-SNRPN locus is a complex, imprinted region
implicated in PWS (101). It encodes a bicistronic transcript, producing two
proteins, SNURF and SmN, from a single mRNA (102). The locus also con-
tains multiple C/D box small nucleolar RNAs (snoRNAs), including HBII-
52, which regulates the alternative splicing of the serotonin receptor 2C
pre-mRNA (103). The SNRPN 5’ region, which colocalizes with the PWS-IC,
contains two DNase I hypersensitive sites (DHS1 and DHS2) on the pater-
nal chromosome. These sites interact with regulatory proteins, including
NRF-1, which is involved in mitochondrial and metabolic functions. DHS2
is an enhancer for the SNRPN promoter and shows allele-specific inter-
actions with various transcription factors (104). This role is vital for pre-
serving the integrity of neuronal networks, which are crucial for normal
brain development and function.

Disruption of this locus, particularly on the paternal allele, can lead
to PWS-like phenotypes (16, 101). Investigations involving individuals
with PWS have clarified the role of SNURF-SNRPN in neurodevelopmen-
tal impairments, with changes in the expression of these genes having
been linked to various neurological outcomes, especially those exhibiting
features consistent with ASD (105–107). Accordingly, alterations in the
expression of the SNURF-SNRPN gene may provide a molecular founda-
tion for the neurodevelopmental impairments observed in PWS, specifi-
cally its relationship with ASD-like traits. Subsequent research aimed at
understanding the impact of these disruptions on neural networks may
yield critical insights into the mechanisms underlying both PWS and the
broader spectrum of ASD-related disorders.

snoRNAs. snoRNAs are short, non–protein-coding RNAs that regulate ri-
bosomal and spliceosomal functions. They fulfill this role by directing ri-
bose methylation and pseudouridylation at specific nucleotide residues

in ribosomal RNAs and small nuclear RNAs, respectively (108, 109). Pater-
nally expressed snoRNA clusters, particularly SNORD116 (HBII-85), within
the PWS critical region were found to be crucial for proper neural differ-
entiation and development in human iPSC models (110) and essential for
regulating gene expression through chromatin decondensation and nu-
cleolar maturation in neural tissue (111). Deleting these snoRNA clus-
ters in human Lund human mesencephalic (LUHMES) cells using CRISPR-
Cas9 has been linked to significant disruptions in the expression of genes
that govern cytoskeletal formation, extracellular matrix integrity, and
neuronal arborization (112). These studies, as reviewed by Bratkovic
et al. (108), indicate that snoRNAs are vital for posttranscriptional mod-
ifications of RNA, a process crucial for normal neuronal function and
plasticity.

Although other genes within the PWS region contribute to subtle phe-
notypic variations and may play a role in the overall phenotypic variability
of PWS, SNORD116 deficiency is the primary cause of key PWS characteris-
tics, including infantile hypotonia, early-onset obesity, and hypogonadism
(113–115). Mouse models with the DEL of SNORD116 exhibit cognitive
impairments in learning and memory, which are essential characteris-
tics of PWS (116). Notably, the epigenetically regulated chromatin decon-
densation observed at snoRNA clusters is essential for neuronal matura-
tion processes and alterations in nucleolar size, as research indicates that
brains affected by PWS exhibit diminished nucleolar size (111). A gene ex-
pression study utilizing microarrays and quantitative RT-PCR analysis on
RNA extracted from lymphoblastoid cells of male patients with PWS com-
pared to age and cognition-matched nonsyndromic males showed differ-
ential expression of 14 neurodevelopmental genes, including serotonin
receptor genes and genes involved in eating behaviors and obesity, such
as ADIPOR2, MC2R, HCRT, and OXTR (117). These findings underscore the
importance of snoRNA clusters within the critical PWS region as a key reg-
ulator of gene expression in the brain. They also highlight their potential
role in shaping the neural phenotype in PWS.

Cytoplasmic FMRP Interacting Protein 1 (CYFIP1). CYFIP1 is located in
the 15q11.2 BP1-BP2 region, outside the critical locus associated with
PWS. This gene encodes a protein that plays a vital role in controlling cy-
toskeletal dynamics and the process of protein translation. The resulting
protein is a WAVE regulatory complex component, aiding actin polymer-
ization. It also interacts with the FMR1 protein, which regulates synap-
tic function and translation initiation factor 4E, helping to inhibit protein
translation (118–120).

CYFIP1 is crucial for synaptic structure and function, with studies
showing that it is enriched at inhibitory postsynaptic sites, and its dosage
can bidirectionally impact inhibitory synaptic structure and function (51,
121). Specifically, CYFIP1 upregulation increases excitatory synapse num-
ber while decreasing inhibitory synapse size, whereas its loss enhances
synaptic inhibition (51). This enrichment suggests that CYFIP1 plays a
critical role in stabilizing synaptic connections and enhancing synap-
tic signaling, helping to maintain a healthy balance between excitatory
and inhibitory inputs in neural circuits. Recent research underscores that
CYFIP1’s regulation of this excitatory-inhibitory balance is essential for
maintaining synaptic plasticity (51, 121). An imbalance can hinder effec-
tive neural communication, leading to disrupted network function and
cognitive deficits.

Furthermore, research has shown that missense variants in CYFIP1 dis-
rupt actin polymerization, which is critical for maintaining dendritic spine
morphology, synaptic architecture, and neuronal connectivity. These
structural impairments have been associated with intellectual disabili-
ties and behavioral deficits and are believed to disrupt large-scale brain
connectivity, thereby emphasizing the significance of appropriate CYFIP1
function in neural development (122).

Supporting this, Domínguez-Iturza et al. (123) demonstrated that
CYFIP1 haploinsufficiency in mice leads to significantly reduced bilat-
eral functional connectivity, particularly across the corpus callosum. This
decline was correlated with atypical interhemispheric coordination and
behavioral alterations relevant to ASD and SCZ, thereby underscoring
CYFIP1’s critical role in the formation of coherent large-scale neural
networks.
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In addition to these structural implications, Hsiao et al. (124) have
demonstrated that CYFIP1 is vital for regulating presynaptic activity dur-
ing development. This regulation is critical for the maturation and func-
tionality of synapses, suggesting that disruptions in CYFIP1 expression
can lead to neurodevelopmental impairments. The study indicates that
when CYFIP1 levels are inadequate, presynaptic dysfunction can adversely
affect neurotransmitter release, impacting the efficacy of synaptic trans-
mission and potentially exacerbating the symptoms of neurodevelopmen-
tal disorders such as ASD and SCZ. This positions CYFIP1 as a partici-
pant in maintaining synaptic structure and as a key regulator of synaptic
signaling (124).

Specifically, reduced CYFIP1 levels have been associated with hyper-
activity of glutamatergic signaling pathways, exacerbating excitatory
activity and contributing to synaptic dysfunction observed in neurodevel-
opmental disorders (51). CYFIP1-deficient mice exhibit impaired synap-
tic transmission and behaviors, with parental origin-specific effects ob-
served despite no evidence of parental expression differences (125).
Furthermore, investigations utilizing mouse models exhibiting hap-
loinsufficiency of CYFIP1 revealed abnormal frontostriatal connectivity
alongside impaired cognitive flexibility (55), linking CYFIP1’s role directly
to behavioral outcomes associated with ASD and SCZ.

Emerging evidence indicates that CYFIP1 haploinsufficiency signifi-
cantly shapes PWS phenotypes by affecting both compulsive behaviors
and the regulation of feeding. Mouse models exhibiting DEL of the CYFIP1
gene demonstrate an increase in compulsive-like behaviors alongside al-
terations in palatable food consumption, indicating a potential involve-
ment in the obsessive eating patterns frequently observed in individuals
with PWS (126). Furthermore, CYFIP1 is recognized as a key factor in the
neurodevelopmental trajectory of those with PWS, with variations in its
expression associated with cognitive impairments, repetitive behaviors,
and deficits in social cognition (58).

In conclusion, the balance of excitatory and inhibitory neural activity
regulated by CYFIP1 is essential for the normal neurodevelopmental tra-
jectory. Disruptions in this balance may lead to functional impairments in
neural circuits that manifest as social and cognitive deficits observed in
neurodevelopmental disorders such as ASD and SCZ (51, 55). Investigat-
ing specific genetic variants of CYFIP1 that correlate with these behaviors
will enhance our understanding of the genotype-phenotype relationships
in PWS (55, 126) . Concurrent research suggests that pharmacological in-
terventions targeting downstream pathways related to CYFIP1 might of-
fer promising therapeutic avenues for individuals with PWS and related
neurodevelopmental disorders (51, 118).

The molecular roles of MAGEL2, NDN, SNURF-SNRPN, and CYFIP1 con-
verge on common neurodevelopmental and physiological pathways dis-
rupted in PWS. These genes influence hypothalamic function, neuronal
survival, synaptic architecture, and gene expression regulation mecha-
nisms essential for appetite regulation, social behavior, and cognitive
functioning. For instance, MAGEL2 and NDN contribute to hypothalamic
function, including feeding, reproduction, and respiratory control. At the
same time, SNURF-SNRPN and CYFIP1 modulate synaptic plasticity and
excitatory/inhibitory balance through RNA regulation and translational
control. Dysfunctions across these genes result in overlapping outcomes,
including hyperphagia, cognitive impairments, and psychiatric comor-
bidities such as ASD and SCZ. This convergence suggests that diverse ge-
netic alterations within the 15q11-q13 region ultimately disrupt shared
neurobiological circuits, providing a mechanistic framework that links
genotype to phenotype in PWS (as summarized in Table 3).

Neuroimaging Studies in PWS
Neuroimaging techniques have significantly advanced our understanding
of PWS, revealing structural and functional brain abnormalities that un-
derlie its complex behavioral and cognitive phenotypes. Techniques such
as magnetic resonance imaging (MRI), diffusion tensor imaging (DTI),
and functional MRI (fMRI) have identified key alterations in gray matter
(GM), white matter (WM), and neural connectivity. These methods pro-
vide insights into the neurobiological basis of hyperphagia, obsessive-
compulsive behaviors, and psychiatric comorbidities like ASD and SCZ
(127). The following section explores neuroimaging techniques used to

assess brain functionality and their associations with various brain re-
gions and PWS genetic subtypes. Additionally, we discuss their limitations
and methodological constraints.

Structural MRI and GM Abnormalities. Structural MRI (sMRI) studies
have consistently shown widespread GM reductions in PWS, particularly
in reward processing and inhibitory control regions (128, 129). Ogura
et al. (129) examined the entire brain and found significant reductions
in GM and WM volume in the orbitofrontal cortex (OFC), caudate nucleus,
and hypothalamus of patients with PWS (N = 12) compared to controls
(N = 13). Moreover, in patients with PWS, the mean GM volume was
smaller than in controls, as was the case for the mean volume of WM. Using
T1-weighted and DTI in 12 children with PWS, 18 obese children, and 18
controls, Xu et al. (128) reported that both the PWS and obese children
groups showed similar GM alterations, particularly in prefrontal, cingu-
late, and temporal regions, possibly reflecting shared mechanisms in the
development of eating disorders. However, only the PWS group exhibited
distinct WM changes connecting these regions, which may explain hyper-
phagia and constant hunger in PWS.

Using T1-weighted MRI, a study involving 31 healthy controls and 21
patients with PWS from a Japanese population found reduced pituitary
volume in patients with PWS (130). This reduction correlated with hy-
perphagic and autistic traits, supporting hypothalamic-pituitary dysreg-
ulation as a core feature of PWS. Conversely, comparing high-resolution
T1-weighted images of 11 age- and gender-matched typically develop-
ing siblings and 20 children with genetically confirmed PWS—11 with DEL
and 9 with mUPD—revealed increased cortical thickness in the medial
prefrontal cortex (PFC) and anterior cingulate cortex in the mUPD group,
suggesting a delay in synaptic pruning (131). Moreover, examination of
three-dimensional (3D) T1-weighted images in 21 Japanese adolescents
and adults with PWS (age range 13–50 years, 14 males, 7 females) and
40 age- and sex-matched healthy controls with normal development re-
vealed that cerebellar abnormalities in PWS, including reduced posterior
lobule volume and enlarged dentate nuclei, are linked to motor deficits
and autism-like traits. Notably, posterior cerebellar lobule volumes neg-
atively correlated with hyperphagia and autism scores. At the same time,
dentate nucleus enlargement was inversely associated with intellectual
quotient, highlighting the cerebellum’s role in cognitive and behavioral
domains (132). These structural changes underscore the role of develop-
mental disruptions in PWS pathophysiology.

More recently, in a study comparing alterations in brain nuclei in 18
obese children without PWS, 12 age- and sex-matched children with PWS,
and 18 healthy, Wu et al. (133), using T1-weighted MRI, found signifi-
cant atrophy in the bilateral thalamus, pallidum, hippocampus, amygdala,
nucleus accumbens, right caudate, bilateral hypothalamus, and bilateral
deep cerebellar nuclei in the PWS group compared to controls and obese
individuals without PWS. Based on these findings, the authors suggest
that the structural abnormalities in PWS are distinct from those in obesity
and are likely influenced by genetic factors.

In summary, sMRI studies in individuals with PWS reveal widespread
gray and WM reductions, especially in regions involved in reward process-
ing, inhibitory control, and hypothalamic-pituitary function. Compared to
controls and obese individuals, patients with PWS show unique structural
abnormalities, including reduced OFC, caudate, hypothalamus, cerebel-
lar volumes, and distinct WM changes. These abnormalities are linked
to hyperphagia, motor deficits, and autism-like traits. Increased cortical
thickness in medial prefrontal and cingulate cortices in mUPD-PWS sug-
gests delayed synaptic pruning. Findings highlight neurodevelopmental
disruptions as core to PWS pathophysiology.

Diffusion MRI and WM Integrity. Although limited in number, DTI stud-
ies have been instrumental in characterizing WM integrity in PWS. A study
in 15 PWS (ages 17 to 30) and 15 age- and gender-matched controls re-
ported WM microstructural deficits in PWS, including reduced fractional
anisotropy in the corpus callosum, cingulum, and superior longitudinal
fasciculus, indicative of impaired axonal myelination (134). Furthermore,
a study involving 38 Dutch children and adolescents found that fractional
anisotropy correlates with hypotonia, attention deficits, and sensory pro-
cessing issues. Subtype-specific differences were also observed, such that
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cases of mUPD exhibited WM abnormalities (e.g., in the cingulate cortex),
while those with the DEL subtype displayed milder changes (135). Intrigu-
ingly, these findings align with the increased risk of psychosis in mUPD
cases and with the substantially lower risk for psychosis in DEL cases,
highlighting the significance of WM integrity in the emergence of psy-
chosis in PWS. Collectively, these abnormalities point to disrupted neural
connectivity as a key contributor to the behavioral and cognitive pheno-
type in PWS.

fMRI and Reward Circuit Dysregulation. This section investigates the in-
tricate dysregulation of reward circuits in PWS, as evidenced by fMRI stud-
ies. It underscores the association between reward-related networks and
appetite regulation, analyzing how these cerebral mechanisms contribute
to the characteristic insatiable hunger observed in individuals with PWS.
The assessment of functional connectivity through resting-state fMRI
further elucidates the neural pathways implicated in this syndrome,
providing critical insights into the connectivity patterns that underpin
behavioral regulations in PWS.

In one of the earliest fMRI studies on PWS, Holsen et al. (136) com-
pared brain activation in response to food images before and after a meal
between age-matched adolescents with PWS (N = 9) and healthy-weight
controls (N = 9). In response to food pictures presented post-meal, the
PWS group exhibited greater activation in food motivation networks in-
volving the OFC, medial PFC, insula, hippocampus, and Parahippocampal
gyrus. Dimitropoulos and Schultz (137) examined food-related neural cir-
cuitry in individuals with PWS (N = 9, age range = 8–38 years) and controls
(N = 10, age range = 18–29 years) with developmental delay and simi-
lar body mass index (BMI). In response to high-versus low-calorie foods,
they showed increased activation in the PWS group in the neural circuitry
known to mediate hunger and motivation, including the hypothalamus
and the OFC. Subsequently, Holsen et al. (138) conducted a functional
MRI in 15 age-matched healthy-weight controls, 14 patients with PWS,
and 14 BMI age-matched obese patients without PWS before (pre-meal)
and after (post-meal) eating while viewing images of food and non-food.
In this study, individuals with PWS exhibited heightened post-meal acti-
vation in subcortical regions, including the hypothalamus, amygdala, and
hippocampus, while showing reduced cortical activation in inhibitory con-
trol areas such as the dorsolateral PFC. In contrast, the obese group dis-
played greater engagement of the inhibitory control regions compared to
both the PWS and healthy-weight groups, highlighting a potential neural
basis for impaired regulatory control and increased obesity risk in PWS.

Using resting-state fMRI, several studies investigated functional brain
network alterations in individuals with PWS. A study involving 21 chil-
dren with PWS (10 girls, 11 boys) and 18 healthy siblings as controls
(10 girls, eight boys) revealed decreased functional connectivity in the
default mode network (DMN) and the motor sensory network, as well
as increased functional connectivity in the core network (anterior cingu-
late/insula). The PFC network exhibited both increased (between the ven-
tral PFC with both the dorsolateral and orbital PFCs) and decreased (be-
tween dorsolateral and orbital PFCs) connectivity (139). These findings
indicate altered functional connectivity among brain regions involved in
eating/satiety reward processing (139). In a study comparing 24 with PWS
to 29 control adults (140), PWS showed (i) disrupted functional connec-
tivity between the PFC and basal ganglia, as well as within subcortical re-
gions, which was linked to obsessive-compulsive behaviors, (ii) Increased
connectivity in the sensorimotor–putamen loop which was strongly asso-
ciated with self-picking, (iii) abnormal connectivity within basal ganglia
circuits and between the striatum, hypothalamus, and amygdala which
was related to obsessive eating behavior.

Finally, a study by Huang et al. (141) involving 58 children: 32 Healthy
controls (21 males) and 26 with PWS (17 males) found that children with
PWS exhibited decreased intranetwork functional connectivity in the dor-
sal attention, auditory, medial visual, and sensorimotor networks (SMN).
These changes were positively correlated with developmental quotients,
suggesting that intranetwork functional connectivity alterations could
serve as biomarkers for developmental delays in PWS. Additionally, inter-
network functional connectivity between the posterior DMN and anterior
DMN and between the posterior DMN and SMN was significantly reduced

in PWS children, with these changes negatively correlated with develop-
mental scores. These findings highlight the importance of both intra- and
inter-network FC in understanding the neurodevelopmental mechanisms
underlying PWS.

Functional and resting-state fMRI studies in individuals with PWS con-
sistently revealed hyperactivation in reward-related and hunger-related
brain regions, such as the OFC, hypothalamus, and amygdala, follow-
ing food cues, particularly after meals. Compared to controls, individuals
with PWS exhibited reduced activation in inhibitory control regions and
showed altered functional connectivity in networks related to eating be-
havior, satiety, and compulsivity. Resting-state studies further indicated
disruptions in both intranetwork and internetwork connectivity, includ-
ing the default mode, attention, and SMNs, which were associated with
obsessive behaviors and developmental delays, suggesting these connec-
tivity patterns may serve as potential biomarkers for PWS.

Structural-Functional Coupling and Network Topology. A recent study by
Huang et al. (142) explored the coupling between structural and func-
tional networks using DTI and resting-state fMRI data from 25 children
with PWS and 28 age- and sex-matched healthy controls. They found that
children with PWS exhibited decreased structural-functional coupling as-
sociated with developmental delays. This decoupling is characterized by a
higher characteristic path length and lower global efficiency in the struc-
tural network, indicating reduced integration and information transfer
efficiency.

Nodal analysis further revealed alterations in key brain regions, in-
cluding the precentral gyrus, prefrontal gyrus, and basal ganglia, which
are part of large-scale networks such as the SMN, DMN, salience network
(SAN), and basal ganglia network (BGN). Structural network disruptions
were more pronounced in the SMN, DMN, and visual network, while func-
tional network disruptions were more evident in the SAN and BGN. These
findings suggest that the structural and functional decoupling may be
linked to developmental delays in motor and cognitive domains. More-
over, group differences based on nodal analysis revealed that functional
networks in PWS children showed less significant disruptions than struc-
tural network disruptions, suggesting that structural network abnormal-
ities may play a more critical role in the neurodevelopmental delays
observed in PWS.

Neuroimaging Findings in PWS by Their Genetic Subtypes. The genetic
heterogeneity of PWS profoundly influences neuroimaging phenotypes,
which can be categorized by two primary genetic subtypes: DEL and
mUPD. A study involving 15 individuals with PWS due to a typical DEL, 8
with PWS due to mUPD, and 25 age-matched healthy-weight individuals
found that the DEL subtype exhibited pronounced GM loss in prefrontal
and temporal cortices. In contrast, mUPD was found to be associated
with diffuse cortical atrophy, ventriculomegaly, and thickened cortices—
features linked to psychiatric symptoms (143). For instance, mUPD
individuals showed heightened amygdala reactivity and ACC dysfunc-
tion, mirroring SCZ-like phenotypes (35). In contrast, DEL patients with
15q11-q13 Type I DEL display more severe cerebellar hypoplasia and
visual processing deficits (13).

Neuroimaging studies utilizing structural sMRI, DTI, and fMRI further
revealed how genetic differences influence brain structure, neural con-
nectivity, and associated cognitive, behavioral, and metabolic dysfunc-
tions. Key genes such as SNRPN, SNORD116, and MAGEL2 play crucial
roles in brain development and function, contributing to subtype-specific
neuroimaging patterns (127, 129, 130, 132). Table 4 summarizes these
structural and functional connectivity alterations across key brain re-
gions, emphasizing genetic subtype differences (DEL vs. mUPD) and their
implications for neurodevelopment, reward processing, and psychiatric
comorbidities.

With respect to structural and functional connectivity abnormalities,
the DEL subtype is characterized by greater structural atrophy, particu-
larly in the PFC, hypothalamus, and cerebellum. Functional imaging sug-
gests compensatory hyperactivation in the OFC and amygdala, leading
to exaggerated responses to food cues and impaired inhibitory control.
Genetic alterations, particularly involving SNRPN and MAGEL2, may dis-
rupt neural pathways that are crucial for reward processing, emotional
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Table 4. Comparison of structural and functional connectivity alterations across key brain regions in PWS

Brain region Structural MRI (sMRI)
Findings

Functional MRI (fMRI) and
diffusion MRI (dMRI) findings

Genetic subtype differences

Orbitofrontal
cortex (OFC)
(129, 136–139,
141, 143)

Reduced gray matter (GM)
volume, particularly in
the medial and lateral
OFC

Hyperactivation in response to
food stimuli; impaired
connectivity with limbic
structures (amygdala, insula)

DEL: More pronounced GM loss; increased food-related
activation in OFC

mUPD: Atypical OFC-limbic connectivity, associated with
emotional dysregulation

SNRPN in DEL individuals may alter dopamine and
serotonin signaling pathways affecting food-related
reward processing

Hypothalamus
(128, 130, 133,
136–138, 140,
143)

Volume reduction linked to
hyperphagia and
endocrine dysfunction

Disrupted connectivity with the
OFC and brainstem appetite
centers

DEL: Greater structural atrophy; stronger functional
decoupling from satiety circuits

mUPD: More severe hypothalamic-pituitary
dysregulation, influencing emotional eating

MAGEL2 mutations in DEL impact hypothalamic
regulation of hunger and satiety

Amygdala (133,
136–138, 140)

GM atrophy in basolateral
nuclei, affecting
emotional processing

Hyperactivity during food-related
and social-emotional cues;
altered connectivity with the
prefrontal cortex

DEL: More preserved structural integrity but
hyperactive response to emotional stimuli

mUPD: Increased amygdala-prefrontal disconnect,
linked to higher psychiatric comorbidity. Altered
SNORD116 gene expression in DEL may influence
emotional regulation and psychiatric
symptomatology

Cerebellum (129,
131, 132, 136,
137)

Reduced posterior lobule
volume and enlarged
dentate nuclei

Altered connectivity with motor
and cognitive networks

DEL: More pronounced cerebellar atrophy affecting
coordination

mUPD: Broader connectivity deficits linked to cognitive
inflexibility

MAGEL2 gene expression, especially in the cerebellum,
may contribute to these cerebellar abnormalities

Prefrontal cortex
(PFC) (136,
138, 140, 143)

Decreased GM in
dorsolateral PFC, linked
to executive dysfunction

Hypoactivation during inhibitory
control tasks; reduced
connectivity in the default
mode and salience networks

DEL: More severe executive dysfunction due to
structural loss. mUPD: Atypical prefrontal-amygdala
coupling, contributing to mood instability

Altered expression of SNRPN and SNORD116 genes in
DEL may impact the development of prefrontal
circuitry involved in executive functions

regulation, and satiety, further contributing to the functional deficits ob-
served in this subgroup.

Conversely, the mUPD subtype displays widespread disruptions in
functional connectivity, particularly within the prefrontal-limbic circuit.
This subtype is linked to psychiatric symptoms resembling those seen in
SCZ, with reduced prefrontal-amygdala and prefrontal-striatal connectiv-
ity leading to emotional dysregulation and increased risk of affective dis-
orders. SNORD116 gene expression plays a significant role in modulating
neural circuits involved in mood and behavior regulation, and its dysreg-
ulation in mUPD individuals contributes to these abnormalities.

DTI studies further support these differences by showing greater WM
disconnection in mUPD individuals, particularly in the cingulum and cor-
pus callosum. This structural disconnection correlates with higher rates
of compulsivity, emotional lability, and impaired social cognition, re-
flecting underlying genomic imprinting effects. The close association
between genetic subtype, structural abnormalities, and functional con-
nectivity disruptions suggests that targeted interventions should be tai-
lored to the specific neural vulnerabilities of each PWS subtype. In fu-
ture genetic studies, incorporating genes such as SNRPN, SNORD116, and
MAGEL2 could provide deeper insights into how these genes influence
neuroanatomy and neural circuits. Additionally, integrating multimodal
neuroimaging approaches (such as fMRI, diffusion MRI, and sMRI) with ge-
nomic data could further elucidate the relationship between genetic de-
fects and neurodevelopmental outcomes in PWS. Future research combin-
ing genomic, transcriptomic, and multimodal neuroimaging approaches
could shed light on the molecular mechanisms that drive neurodevelop-
mental differences, enabling the development of more personalized and
effective interventions for individuals with PWS.

Longitudinal and Developmental Insights. Longitudinal MRI studies re-
main limited but suggest dynamic neurodevelopmental changes in PWS.
Children with mUPD exhibit early brain atrophy and progressive WM de-
generation, while DEL subtypes show static GM reductions without cor-
tical thinning (131). Cortical gyrification index reductions in the frontal
and parietal lobes correlate with cognitive impairment, highlighting
disrupted intracortical organization (135). Early-life hypothalamic vol-
ume loss predicts later hyperphagia severity, emphasizing the need for
developmental biomarkers (128).

Future Directions and Advanced Techniques. Advanced neuroimaging
techniques have significantly contributed to characterizing the structural
and functional brain abnormalities associated with PWS, offering critical
insights into the neural mechanisms underlying its cognitive, behavioral,
and developmental features. Structural MRI studies revealed GM reduc-
tions and WM lesions, but protocol variability, limited resolution, and mo-
tion artifacts affect generalizability and accuracy. DTI is specifically lim-
ited by partial volume effects and difficulty resolving crossing fibers. To
overcome these limitations, more advanced diffusion imaging techniques
have been developed. Diffusion Spectrum Imaging (DSI), High Angular
Resolution Diffusion Imaging (HARDI), and Neurite Orientation Dispersion
and Density Imaging (NODDI) offer substantial improvements in detecting
and characterizing complex fiber structures. DSI, for example, is capable
of crossing fibers in regions such as the optic chiasm, centrum semiovale,
and brainstem—regions where DTI frequently falls short (144). HARDI
offers enhanced resolution in characterizing intricate fiber orientations
and crossings within a single voxel (145, 146), and although computa-
tionally intensive, it yields more dependable results in fiber tractography.
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Table 5. Clinical features and therapeutic approaches for PWS

Feature Impact Therapeutic approach

Hyperphagia Obesity, diabetes Dietary control,
pharmacotherapy (33)

Hypotonia Motor delays,
respiratory,
difficulties

Physical therapy, growth
hormone therapy (18, 152)

Behavioral
issues

Social
withdrawal,
repetitive
behaviors

Behavioral therapy,
pharmacotherapy (14, 37)

Psychiatric
symptoms

Anxiety, ASD, SCZ Multidisciplinary psychiatric
care (35, 148)

Furthermore, NODDI provides additional insight into axonal density and
morphology, capturing tissue microstructure with high precision (146).
Moreover, advanced techniques like diffusion kurtosis imaging and ar-
terial spin labeling may better capture WM complexity and perfusion
changes (127) and thus enhance our insights into structural-functional
coupling characteristics in PWS. Furthermore, the interpretation of fMRI
is complicated by syndrome heterogeneity, psychiatric comorbidities, and
compliance challenges, especially in children. See Table 4A in the Supple-
mentary Material for more details.

To advance research on PWS, future studies should prioritize large-
scale, longitudinal cohorts to track brain maturation trajectories and
treatment responses across development. This is especially relevant given
the limitations of existing imaging studies, which are often constrained by
small sample sizes, broad age ranges, and substantial genetic and clini-
cal heterogeneity, including frequent comorbidities such as ASD and SCZ.
High-resolution neuroimaging methods (see above) in younger popula-
tions are particularly needed to capture early neural alterations. Inno-
vative methodological approaches can help overcome current challenges
in data acquisition. For example, the use of mock scanner training pro-
tocols can help individuals with behavioral difficulties acclimate to the
MRI environment, thereby enhancing data quality and participant compli-
ance (147). The integration of artificial intelligence (AI) with multimodal
MRI data holds promise for identifying predictive biomarkers of ASD or
SCZ risk in PWS, paving the way for personalized interventions. Finally, in-
tegrating neuroimaging techniques such as MRI with cellular-resolution
imaging methods like confocal or electron microscopy in iPSC models may
provide critical insights into how specific genetic variants in PWS influ-
ence neural circuit development, a concept supported by recent transcrip-
tomic studies using patient-derived neurons to investigate shared and
distinct mechanisms in ASD and SCZ.

Therapeutic Approaches and Potential Treatments
Current treatments for PWS focus on managing symptoms and improv-
ing quality of life. Advancements in clinical management have facilitated
a more structured approach combining hormonal therapy, behavioral in-
terventions, and pharmacological treatments for addressing the multi-
faceted challenges PWS poses (as shown in Table 5). Combined with regu-
lar evaluations and preventive screenings, early detection and treatment
are strongly recommended to optimize treatment protocols and inter-
ventions (68). From a physical health perspective, comprehensive mon-
itoring of bone mineral density, scoliosis, hypothyroidism, and potential
complications such as type 2 diabetes and sleep-disordered breathing is
essential (67, 148). Behavioral and occupational therapies are crucial in
enhancing cognitive development and social skills, while recent evidence
suggests that specialized dietary interventions may effectively manage
hyperphagia (33).

Dietary management is particularly crucial, as hyperphagia—a signifi-
cant and challenging symptom—usually emerges in childhood. Since most
patients with PWS have lower energy requirements, they need about 70%
of the calories consumed by their age-matched peers without the condi-

tion (149). Treatment strategies are also tailored to the patient’s age, ini-
tially focusing on addressing feeding difficulties and inadequate weight
gain in infancy before transitioning to strict dietary control as the child
grows. Infants diagnosed with PWS frequently require specialized feeding
support and high-calorie nutritional supplements to facilitate appropri-
ate growth and development (16, 18). Behavioral strategies, such as meal
planning, environmental modifications, and supervision during meals, are
commonly employed to reduce the risk of obesity and associated health
complications (150, 151). In addition to dietary and behavioral interven-
tions, physical therapies are essential for addressing muscle tone and
motor delays and enhancing overall physical function, ultimately con-
tributing to a better quality of life (152). In more severe cases, pharma-
cological treatments have been explored to reduce appetite and control
food-seeking behaviors.

Several drugs are being explored for the treatment of metabolic prob-
lems and hyperphagia in people with PWS. A pilot study by Miller et al.
(153) demonstrated that metformin, a commonly used drug for type 2
diabetes, reduced appetite in children with PWS, particularly in females
and those with hyperinsulinemia. Similarly, a randomized controlled trial
by Diene et al. (154) found that liraglutide, another antidiabetic medica-
tion, reduced appetite and food drive in children with PWS. These find-
ings underscore the potential role of antidiabetic therapies in addressing
hyperphagia and obesity-related challenges in PWS. Beyond antidiabetic
medications, other drugs have also shown potential for managing hyper-
phagia and food-seeking behaviors in individuals with PWS. Topiramate,
an antiepileptic medication, has appetite-suppressing properties, mak-
ing it a candidate for PWS management (155). A study by Smathers et al.
(27) demonstrated its effectiveness in reducing hyperphagia and food-
seeking behaviors in individuals with PWS. In the same vein, setmelan-
otide, a melanocortin-4 receptor (MC4R) agonist, has demonstrated sig-
nificant efficacy in reducing obesity and hyperphagia. A phase 3 clinical
trial reported substantial reductions in weight and hunger after one year
of treatment in individuals with rare genetic disorders (156). Although
not extensively studied in PWS, its mechanism of action and success in
related conditions suggest that setmelanotide may offer a promising
approach to appetite regulation and weight management in this popula-
tion. Growing evidence indicates that therapy with oxytocin, a hypothala-
mic hormone, or its synthetic counterpart, carbetocin, could improve hy-
perphagia and behavioral symptoms in individuals with PWS (157, 158).
However, the efficacy of these medications in managing hyperphagia in
PWS remains inconsistent and requires further research to improve their
outcomes (14).

GH therapy is one of the most widely used interventions as it helps
improve muscle tone, address short stature, and enhance bone density.
This treatment has positively affected physical growth and overall health,
contributing to a better quality of life for individuals with PWS (14). A
comprehensive meta-analysis highlighted that rhGH treatment is asso-
ciated with increased height, decreased body mass index, and reduced
fat mass proportion among patients with PWS (159). The administration
of rhGH has been shown to improve both strength and growth in chil-
dren with PWS, with treatment ideally starting before the age of one
and continuing throughout adolescence (18, 160). Moreover, evidence
suggests a positive impact of rhGH therapy on cognitive development
(161). In general, despite concerns about potential adverse effects, the
benefits of rhGH treatment in PWS outweigh the risks, provided that
proper screening, monitoring, and individualized treatment decisions are
maintained (162).

To address psychiatric manifestations, antipsychotic medications such
as risperidone and aripiprazole are frequently prescribed to help reduce
irritability and mood-related symptoms (163). While these medications
can be effective in some individuals, they come with side effects, such
as weight gain and sedation, which need careful management. Addition-
ally, behavioral therapies are commonly employed to address maladap-
tive behaviors and improve coping strategies; however, these approaches
alone often remain suboptimal in treating the full range of psychiatric
symptoms, signifying the need for more effective, targeted interven-
tions that can address the unique neurobiological underpinnings of the
disorder (61, 164).
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Recent advances in genetic research have shown that the use of
mouse models and human iPSC models holds promise for understanding
the neurobiological underpinnings of ASD and SCZ. These models can help
identify more precise targets for intervention, allowing for tailored ther-
apies that specifically address the genetic and molecular mechanisms
involved in these disorders. However, further research is essential to
translate these findings into clinical practice and improve outcomes for
individuals with ASD or SCZ, particularly by leveraging insights from
patient-derived neuronal models, as demonstrated in recent transcrip-
tomic studies.

Although significant progress has been made, developing comprehen-
sive treatments for PWS remains challenging. The syndrome’s hetero-
geneity, marked by distinct clinical manifestations and severity levels and
genetic differences such as deletions or uniparental disomy on chromo-
some 15, may influence how patients respond to various pharmacological
interventions or behavioral therapies, complicating the development of
standardized therapies (165). During clinical trials and the clinical use of
therapeutics, reliable biomarkers should be in place to objectively track
the efficacy and predict how individuals may respond to specific inter-
ventions. These biomarkers, which can be genetic to guide personalized
treatment plans, biochemical to signal improvements in metabolic dys-
function, or clinical in nature, enabling clinicians to assess the impact of
therapies on both the molecular and behavioral levels, are also lacking
(166–168). Understanding the individual patient vulnerabilities coupled
with the identification and validation of proper biomarkers is essential for
more personalized treatment strategies, ensuring that therapies are tai-
lored to the specific genetic makeup of the individual and supported by
objective clinical follow-up, thereby improving clinical outcomes in PWS.
Furthermore, applying multimodal data analysis through the integration
of genetic, clinical, behavioral, and biochemical information can enhance
clinical decision-making, leading to more personalized treatment plans
and improvement in treatment efficacy (169).

Mahmoud et al. (170) reviewed current clinical trials on PWS and
showed that many of the studies struggle to address the full spectrum
of symptoms, particularly hyperphagia and cognitive impairments. They
noted that clinical trial failures, in addition to the complexity of the syn-
drome, are often due to design-related factors such as patient sample
size, drug dosage, and administration frequency rather than the ineffec-
tiveness of the drugs themselves, highlighting the need for standardized
trial protocols. Additionally, a nonpharmacological study by Holland et al.
(171) reported that vagus nerve stimulation significantly improved emo-
tional regulation, flexibility in food-related behaviors, and reduced tem-
per outbursts in individuals with PWS. These findings, in general, under-
score the importance of refining clinical trial designs and exploring both
pharmacological and nonpharmacological approaches to develop more
effective and comprehensive treatments for PWS.

The translation of PWS research findings from bench to bedside is
further suffering from various challenges at multiple levels, spanning
preclinical modeling, clinical development, and therapeutic implementa-
tion. The absence of robust animal models capable of fully recapitulat-
ing the diverse symptoms of PWS, coupled with the genetic complexity
of the disorder, significantly impedes the development of effective treat-
ments (172). Moreover, an incomplete understanding of the neural mech-
anisms underlying hallmark symptoms such as hyperphagia further limits
the identification of viable therapeutic targets (19, 173). On top of that
even when therapeutic interventions demonstrate clinical efficacy, con-
cerns surrounding accessibility, affordability, and long-term safety per-
sist. Addressing these challenges necessitates sustained research efforts,
interdisciplinary collaboration, and innovative strategies to facilitate the
successful translation of laboratory discoveries into effective clinical
applications for PWS.

PWS as a Neurogenetic Model for Understanding the Relationship
Between Autism and Schizophrenia
Research indicates a significant overlap between ASD and SCZ, which is
considered a special case of PSD, at both diagnostic and trait levels. Stud-
ies have found higher prevalence rates of autistic-like traits and ASD diag-
noses in populations with PSD compared to the general population (174,

175). Individuals with ASD are three to six times more prone to developing
SCZ compared to neurotypical individuals (176). The overlap extends be-
yond negative symptoms, including positive and disorganized ones (177).
This convergence is observed across multiple domains, including symp-
toms, behavior, perception, cognition, biomarkers, genetics, and environ-
mental risk factors (176). Given that PWS co-occurs with both ASD and
PSD, we propose that it provides a unique framework for studying the
shared and distinct mechanisms underlying these conditions.

The genetic subtypes of PWS, including DEL, mUPD, or ICD, give rise
to distinct psychiatric outcomes. Typically, deletions are associated with
traits of ASD, while mUPD or ICD defects may increase the risk for SCZ
(44, 178). The co-occurrence of PWS with ASD and PSD complicates the
understanding of its neurodevelopmental mechanisms, as these disor-
ders are typically regarded as having distinct pathways and character-
istics. PWS’s impact and its associated symptoms related to both ASD
and PSD raise questions about shared and distinct pathways, emphasiz-
ing the need to explore genetic and epigenetic factors (26). One expla-
nation for this co-occurrence is the diametric model of brain function,
proposed by Crespi and Badcock (36) and supported by Abu-Akel et al.
(179), which posits that ASD and PSD are opposing extremes of social
brain development (180). The underdevelopment and overdevelopment
of neurodevelopmental pathways and reciprocal genomic imprinting are
considered canonical phenotypes of the diametric model of brain func-
tion. Such occurrences are illustrated by copy-number variations linked
to both ASD and PSD, including at the 15q11-q13 locus associated with
PWS. This locus contains genes associated with both ASD and PSD, leading
individuals with PWS to exhibit traits of either disorder. The underlying
mechanisms remain poorly understood and may involve complex genetic
interactions.

The diametric model provides insight into the co-occurrence of ASD
and PSD in PWS, with supporting evidence related to the 15q11-q13 locus.
Abu-Akel et al. (90) demonstrated that variations in single-nucleotide
polymorphisms (SNP) rs850807, associated with the MAGEL2 and NDN
genes within the PWS region, influence the expression of both autistic
and psychotic traits in neurotypical adults in a dose-dependent manner.
Specifically, the study found a genotypic shift in trait expression, where
CC carriers exhibited higher paranoia tendencies, TT carriers showed in-
creased autistic tendencies, and CT carriers displayed an intermediate
profile.

Studies have shown that the CYFIP1 gene is associated with an in-
creased risk of both ASD and SCZ (51, 121, 181, 182). Notably, CYFIP1
has been demonstrated to modulate the balance between neuronal ex-
citation (E) and inhibition (I) in a dose-dependent manner, bidirection-
ally influencing inhibitory synaptic structure and function. This effect may
contribute to disruptions in E/I balance, a key factor implicated in the
pathophysiology of both disorders (51). Consistent with this, findings
from a magnetic resonance spectroscopy study indicate that autistic and
positive traits are interactively associated with the ratio of E/I neurotrans-
mitter concentrations in the superior temporal cortex— a region impli-
cated in social functioning impairments characteristic of both disorders
(183). Since both ASD and SCZ may manifest in PWS, investigating this
gene may thus provide crucial insights into the shared and distinct mech-
anisms underlying their relationship.

Moreover, research on SNORD116 further underscores the significance
of the 15q11-q13 locus in understanding the relationship between ASD
and SCZ. Salminen et al. (184) genotyped individuals for five SNPs associ-
ated with SNORD116 and found correlations with schizotypal traits, par-
ticularly in female participants. Their findings suggest that SNORD116
may represent a third independent locus within the 15q11-q13 region,
alongside UBE3A and NDN-MAGEL2, contributing to paranoia and high-
lighting the role of imprinted genes in neurodevelopmental divergence.

Finally, individuals with the mUPD subtype of PWS are more likely to
exhibit symptoms related to SCZ, while those with the DEL subtype tend to
show traits associated with ASD (33, 37, 185). Understanding how these
genetic factors influence neural circuit function can provide valuable in-
sights into the broader biological mechanisms underlying ASD and SCZ, as
explored through genomic and transcriptomic studies in patient-derived
neurons (186).
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Taken together, PWS provides a unique opportunity to explore the
relationship between ASD and SCZ due to its distinct genetic subtypes,
each linked to different psychiatric outcomes. This genetic specificity cre-
ates a controlled model to examine how neurodevelopmental trajectories
diverge based on underlying molecular mechanisms.

The Role of iPSCs in Autism and Schizophrenia Research
Since the initial reports of reprogramming somatic cells into iPSCs, these
pluripotent cells have revolutionized the study of human development,
disease modeling, and drug screening (187–191). iPSCs are generated by
reprogramming adult cells, typically skin or blood cells, into a pluripotent
state, where they can differentiate into various cell types, including neu-
rons (188, 192, 193). A key advantage of these models is their ability to
faithfully replicate patients’ genetic profiles, allowing a detailed exami-
nation of cellular abnormalities linked to critical genes. This personalized
approach provides valuable insights into the underlying disease mecha-
nisms of complex disorders like ASD, SCZ, and PWS, opening new avenues
for precision psychiatry. The success seen in ASD and SCZ modeling using
iPSCs can indeed serve as a foundation for studying PWS and its relation
to these disorders.

Through the production of iPSC-derived neurons from patients with
ASD, several studies have revealed important insights into transcriptome
dysregulation, developmental timing, and synaptic defects associated
with the disorder (194–196). A study employing cortical neurons derived
from iPSCs bearing several ASD-associated mutations, such as GRIN2B,
IQSEC2, SHANK3, UBTF, and 7DUP, revealed that neurons with these muta-
tions displayed hyperexcitability during early development and elevated
postsynaptic activity compared to neurons from healthy family members
(195). However, as time progresses, their electrophysiological proper-
ties gradually decline at later stages. Schafer et al. (197) has also per-
formed time-series transcriptome and cellular phenotype analyses on
ASD neural stem cells and their progeny, revealing an early dysregulation
of particular transcriptional networks linked to an accelerated neuronal
maturation observed in ASD cortical neurons. These results align with
earlier reports suggesting that an elevation in cortical excitability is a core
neurobiological characteristic in cases of ASD (198, 199). Consequently,
in ASD, the models prove advantageous in investigating both syndromic
and nonsyndromic ASD, providing advantages over traditional animal
models (200).

Moreover, iPSC-derived neurons have been pivotal in SCZ research,
capturing key developmental stages and revealing abnormalities such
as impaired connectivity, reduced neurite outgrowth, and altered synap-
tic protein expression (189, 201, 202). A study by Stern et al. (203)
reported that hippocampal neurons derived from iPSCs showed de-
creased arborization, impaired excitability characterized by immature
spike patterns, and a substantial reduction in synaptic activity, accom-
panied by dysregulated expression of synapse-related genes. This study,
which compared patients with SCZ to their unaffected identical twins,
also found that neurons derived from patients with SCZ exhibited re-
duced evoked action potentials. Another iPSC-based study by Sarkar
et al. (204) also reported a similar phenotype, which highlighted the
deficits in hippocampal connectivity in SCZ-derived neurons. In addition
to iPSC-based models, the association between synaptic impairments and
SCZ has also been reported from animal models (205) and postmortem
tissue (206).

Therefore, the findings from both disorders suggest that ASD and
SCZ exhibit contrasting phenotypes during early developmental stages.
However, as development progresses, iPSC-derived neurons from both
conditions eventually converge toward similar phenotypic characteristics
(186). This comprehensive meta-analytical review by Romanovsky et al.
(186) found that iPSC-derived neurons from patients with ASD and SCZ
show distinct and opposing phenotypes during the early stages of differ-
entiation. Still, both exhibit similar synaptic deficits at more advanced
stages of development. Furthermore, this study also revealed that ap-
proximately 75% of the genome-wide association studies genes associ-
ated with ASD are also linked to SCZ.

Over the past two decades, iPSC-based models have provided key
insights into neural pathophysiology (196, 197, 204, 207–209), particu-

larly in neuropsychiatric disorders that animal models cannot fully cap-
ture. These models support precision psychiatry by enabling a person-
alized approach to disease mechanisms. In ASD and SCZ research, iPSC
models have been instrumental, and they can similarly help elucidate how
genetic alterations in PWS affect neural circuits and psychiatric symp-
toms. This includes investigating whether neurons derived from patients
with PWS form distinct subpopulations based on neuronal phenotypes, for
example, accelerated neuronal maturation in those with ASD and delayed
neuronal maturation in those with SCZ, or whether shared genetic factors
ultimately shape neuronal development.

To summarize, iPSCs offer significant potential in precision psychia-
try by helping identify molecular targets that could serve as therapeutic
entry points (210–212). By testing pharmacological agents on neurons
derived from iPSCs, researchers can assess potential treatments specif-
ically tailored to the unique neural dysfunctions associated with ASD and
SCZ subtypes of PWS (213). These approaches may be crucial in address-
ing psychiatric symptoms commonly associated with PWS, which are of-
ten challenging to manage with current treatment options. In general,
by merging the power of personalized medicine with advanced stem cell
technology, neurobiology, and psychiatric research, iPSC-based therapies
can pave the way for better care, improved treatment outcomes, and en-
hanced quality of life for individuals with PWS.

While iPSC models provide valuable insights into the genetic and cel-
lular mechanisms of PWS, particularly regarding neuronal dysfunction as-
sociated with hyperphagia and cognitive deficits, they also come with
significant limitations (214). One significant drawback is their predom-
inant focus on neuronal pathways, which restricts their ability to cap-
ture the multiorgan phenotypes characteristic of PWS, such as endocrine
and metabolic dysregulation, which are central to PWS (215). Addition-
ally, iPSCs do not accurately recapitulate the paternal allele silencing of
the chromosome 15q11-q13 region or the imprinting defects central to
PWS pathology, thereby limiting investigations into noncoding RNAs like
SNORD116 (216). Another major challenge lies in the differentiation effi-
ciency of iPSCs into specific cell types, such as hypothalamic neurons, and
genetic and epigenetic instability of long-term iPSC cultures, which of-
ten leads to inconsistent results, thereby making it difficult to model the
chronic progression of PWS (217, 218).

Given these limitations, novel 3D culture systems, such as organoids,
have been developed to enhance the modeling of the complexity of PWS-
related pathophysiology. Studies have shown that PWS-derived cortical
organoids exhibit significant growth defects and morphological irregu-
larities, suggesting disturbances in early neurodevelopmental processes.
In this context, the development of arcuate nucleus-specific organoids
(ARCOs) represents a significant breakthrough (219), as they are de-
signed to model the arcuate nucleus of the hypothalamus, a key region re-
sponsible for regulating hunger and satiety. Patient-derived ARCOs have
demonstrated abnormal cell maturation and molecular dysregulation,
mirroring the hypothalamic abnormalities observed in patients with PWS.
While iPSC-derived 3D vascular organoids have been developed to better
mimic native blood vessels, they often lack the full complexity of in vivo
organs (220). Despite these challenges, if implemented with standard-
ized differentiation protocols combined with multimodel approaches and
epigenetic editing techniques, iPSC-derived in vitro models remain a vi-
tal tool to address mechanistic gaps and advance therapeutic discovery
in PWS.

Neuronal Models for Investigation of Psychiatric Manifestations in PWS
Recent studies on PWS have increasingly emphasized exploring neuronal
abnormalities to elucidate the underlying psychiatric manifestations as-
sociated with this condition. Research findings from neurons derived from
patients with PWS reveal pronounced deficits in synaptic architecture and
neuronal functionality, as evidenced by reduced presynaptic and postsy-
naptic markers and diminished neuronal excitability (221). Furthermore,
the oxytocinergic system has been implicated in the pathophysiology of
PWS, with a mouse model study illustrating that MAGEL2 deficiency leads
to a suppression of oxytocin neuron activity, likely due to an imbalance in
synaptic excitation and inhibition (83). Artificially elevated E/I balance in
the PFC of a mouse model has been shown to impair social and learning
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behaviors, supporting the hypothesis that this imbalance underlies neu-
ropsychiatric symptoms (222).

Studies in individuals with PWS (31, 223, 224) and animal mod-
els (hamsters, mice, rats, and cats) (225, 226) have shown the asso-
ciation between PWS and neuronal dysfunctions. Furthermore, stud-
ies involving human subjects link cognitive impairments and behavioral
deficits to cortical neuronal function (31, 223, 224). Notably, cortical
neurons in the superficial layers (II-IV) are believed to play a key role
in higher cognitive functions such as executive processing, social cogni-
tion, and communication, domains frequently impaired in ASD and SCZ
(226–228). Manipulation of key signaling pathways in mice has been
shown to disrupt the development of these neurons, with alterations
in Notch activation and the loss of Gde2 leading to delayed differen-
tiation of deep-layer neurons and a significant increase in superficial-
layer neuronal numbers (229, 230). Such disruptions observed in these
layers and their association with human cognitive abilities make corti-
cal neurons an essential model for studying neural mechanisms under-
lying psychiatric disorders with a neurodevelopmental basis, including
those seen in PWS. By concentrating on cortical neurons from superfi-
cial layers, researchers can tackle essential questions about how genetic
and neurobiological factors converge to produce psychiatric symptoms
in PWS. This approach holds significant potential for identifying thera-
peutic targets and advancing precision psychiatry in neurodevelopmental
disorders.

Serotonin plays a key role in regulating mood and social interactions.
Studies in patients with PWS have suggested a potential link between
mood, social interactions, eating disorder and disruptions in serotonin
signaling (231). Along with its role in reward processing, dopamine also
plays a role in behavioral regulation, where abnormal signaling could con-
tribute to food-seeking behaviors and obsessive-compulsive tendencies
in PWS (232, 233). Thus, neuronal models derived from serotonergic and
dopaminergic neurons can provide valuable insights into the neurobio-
logical basis of the disorder and how disruptions in neuronal circuits con-
tribute to the characteristic overeating behavior and obesity seen in PWS,
potentially leading to the development of more targeted therapeutic
approaches.

Future Directions
The management of PWS stands at a significant crossroads, propelled by
remarkable advancements in research and therapeutic innovation. While
current treatments—such as appetite-suppressing drugs, GH therapy, and
behavioral interventions—address specific symptoms, they fall short of
directly targeting the genetic and neurobiological mechanisms underly-
ing the disorder. Recent breakthroughs in gene editing technologies and
the development of patient-derived iPSC models offer promising avenues
for understanding and treating PWS at its root. Alongside symptomatic
management, future efforts will likely focus on these pioneering tech-
nologies and the implementation of personalized medicine approaches,
paving the way for innovative solutions.

Genetic and Epigenetic Therapy
Gene therapies aimed at correcting the genetic imbalances associated
with PWS may offer hope for more effective treatments in the future
(13, 14). By reinstating regular gene expression, these therapies aim to
confront the fundamental causes of PWS. This can be achieved by re-
placing a defective gene with a functional counterpart or introducing
new genes into the genome to enhance or supplement existing biologi-
cal pathways. AAV-based gene therapy has demonstrated the potential to
improve metabolic function in PWS mouse models (84). Although preclini-
cal studies have yielded encouraging outcomes, significant challenges re-
main in the precise and safe delivery of epigenetic therapies to targeted
cells (234).

Epigenetic therapy entails using drugs or targeted modifications to
the epigenome to regulate gene activity (235). The distinctive molecu-
lar defect makes PWS a prime candidate for epigenetic-based therapies.
Therefore, epigenetic treatment is based on the assumption that a phar-
macological approach can induce epigenetic modifications, leading to the
reactivation of repressed PWS genes as a potential therapeutic strategy.
This has been supported by studies conducted on both patient-derived

cells and mouse models, revealing that small-molecule inhibitors target-
ing histone methyltransferases can reactivate essential PWS genes from
the maternal chromosome (236–239). Antisense oligonucleotides (ASOs)
are also gaining attention as a promising therapeutic approach. These
synthetic RNA-like molecules can modify gene expression by targeting
specific RNA sequences. Although no ASO therapies have been approved
for PWS, their use in other genetic disorders, such as Duchenne muscu-
lar dystrophy, has been associated with both therapeutic exploration and
significant safety concerns (240).

Innovative Drug Delivery Systems
Optimizing treatment delivery methods and enhancing targeting ac-
curacy are vital for genetic and molecular therapies to achieve their
desired therapeutic outcomes while reducing off-target effects. Viral
vector-based approaches, such as adeno-associated viruses (AAVs) and
lentiviruses, offer highly effective gene transfer capabilities among the
various delivery systems available. AAV vectors, approved by the Food
and Drug Administration (FDA), are widely utilized due to their low im-
munogenicity and ability to support long-term gene expression, making
them a preferred choice in many therapeutic applications (241). However,
despite these advantages, viral vector-based delivery methods still face
notable challenges, including immune responses, insertional mutagene-
sis, and limitations in packaging capacity (241, 242). For instance, while
AAV vectors are advantageous in terms of safety and sustained expres-
sion, their small cargo capacity significantly restricts their ability to de-
liver larger genetic sequences (241). There is an ongoing effort to advance
gene therapy by optimizing viral capsids to improve targeting, reducing
immune activation, and engineering tissue-specific promoters to ensure
gene expression is confined to the intended tissues, which helps mini-
mize off-target effects and enhance both safety and therapeutic efficacy
(241, 243).

Nonviral approaches for gene delivery, such as lipid nanoparticles
(LNPs), electroporation, and plasmid DNA, offer alternatives to viral vec-
tors by avoiding immune responses and insertional mutagenesis. LNPs
have gained attention and FDA approval as delivery systems for mRNA-
based therapies (244). However, LNPs are not broadly FDA-approved for
other therapeutic applications at the time. Electroporation is a well-
established technique utilized in various research and clinical trial set-
tings. Still, it is currently not FDA-approved for general clinical use for
gene delivery (especially in the context of therapeutic applications). Chal-
lenges such as efficiency, stability, and tissue targeting remain (245, 246).
Along with viral gene delivery, the progress in drug delivery systems is
expected to transform therapeutic administration for central nervous
system disorders (247, 248). Exosome-based delivery systems are not
FDA-approved for clinical use. However, they are considered another
promising avenue, leveraging naturally occurring vesicles to transport
therapeutic cargo across the blood–brain barrier with high biocompat-
ibility (249, 250). However, these delivery systems are also encounter-
ing some obstacles, such as rapid clearance, potential immunogenicity,
stability concerns, difficulties in large-scale production, inefficient cargo
loading, and unclear biodistribution, which could impede their effective
application in drug delivery and therapeutics (244, 251). Specialized de-
livery techniques, including electroporation and nanoparticle-mediated
transport, are additional tools for precise genome editing and epigenetic
regulation through CRISPR-based gene editing and epigenetic modula-
tion while minimizing off-target consequences (252, 253). Nonetheless,
a significant challenge in applying CRISPR for neurodevelopmental dis-
orders, including PWS, lies in achieving efficient delivery mechanisms
that reach all brain cells. Existing methodologies, such as viral vectors
(e.g., AAV) and nonviral delivery techniques, have difficulties ensuring
extensive distribution and successful genome editing across the central
nervous system. This highlights the necessity for innovative targeting
strategies. Advancements in precision medicine now involve using com-
putational modeling, single-cell transcriptomics, and patient-derived cel-
lular models to personalize delivery strategies, aligning them with each
individual’s unique genetic and epigenetic characteristics (254–256). Ad-
dressing the challenges associated with these delivery systems will be
critical for translating gene and molecular therapies from preclinical
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models to clinical applications, and the advancements hold tremendous
promise in addressing clinical manifestations in PWS.

Pharmacological Innovations
Emerging pharmacological agents specifically target the core symptoms
of PWS. Setmelanotide, a melanocortin-4 receptor agonist, has demon-
strated efficacy in regulating appetite and body weight in PWS and
other genetic obesity syndromes. Additionally, investigational drugs that
modulate serotonergic and dopaminergic pathways are in clinical trials,
aiming to mitigate compulsive behaviors and disorders (170). The explo-
ration of combination therapies seeks to optimize treatment outcomes
by addressing multiple symptomatic facets concurrently. Ongoing inves-
tigations into pharmacological treatments targeting psychiatric symp-
toms, including those associated with SCZ and ASD-related behaviors, are
promising, with stem cell-based models offering novel insights into po-
tential therapeutic targets (257). Additionally, neurobiological interven-
tions that focus on restoring the balance between excitation and inhibi-
tion in the brain could help alleviate some psychiatric symptoms seen in
PWS (36).

Regenerative Medicine
A recent study has reported atrophy in several brain regions (133), high-
lighting structural brain abnormalities associated with PWS. Further-
more, adults with PWS exhibit signs of accelerated brain aging, indicat-
ing either premature brain aging or atypical brain development (258).
While these findings highlight the neurological impact of PWS and its sub-
sequent clinical manifestations, emerging regenerative medicine, which
integrates cell therapy, gene therapy, and tissue engineering strategies,
offers hope in ameliorating such structural and functional deficits in
the patients’ brains (259); iPSCs are a powerful tool in revolutioniz-
ing in vitro research and advancing regenerative therapies (260). How-
ever, substantial obstacles still exist in turning these approaches into
effective clinical treatments, mainly due to tumorigenicity, immune re-
jection, functional connectivity miswiring, and ethical and regulatory
concerns.

Precision Medicine and AI
The convergence of AI and precision medicine is revolutionizing the land-
scape of PWS research. AI-driven tools can parse complex datasets to
identify biomarkers, forecast treatment responses, and craft personal-
ized therapeutic approaches (211). When integrated with genetic profil-
ing, these innovative methodologies hold the potential to provide highly
tailored treatments that address the distinct needs of each individual
contending with PWS.

In summary, the future of PWS management lies at the intersection of
cutting-edge research and compassionate care, promising a transforma-
tive impact on the lives of those affected by this complex condition.

Conclusion
PWS represents a critical model for understanding the intersection
of neurogenetics, neurodevelopment, and psychiatric vulnerability. This
state-of-the-art review integrates cutting-edge findings in genomics,
neuroimaging, patient-derived neuronal models, and computational ana-
lytics, thus providing the most comprehensive synthesis available to date
regarding the neurobiological underpinnings of PWS and its co-occurring
psychiatric conditions.

Recent advances indicate that genetic subtypes (DEL, mUPD, and ICD)
fundamentally shape neurodevelopmental trajectories, psychiatric risk,
and treatment responses, thereby necessitating a paradigm shift toward
precision medicine. For instance, individuals with mUPD exhibit an ele-
vated risk for psychotic spectrum disorders and demonstrate differential
responses to psychiatric interventions. In contrast, those with DEL sub-
types are more predisposed to exhibit compulsive behaviors and traits
resembling autism. Recognizing these genotype-phenotype relationships
will enhance patient stratification, guide therapeutic targeting, and ulti-
mately refine treatment strategies to reduce misdiagnosis and improve
long-term management.

An emerging frontier in PWS research is the identification of biomark-
ers for the assessment of treatment response. Findings from neuroimag-
ing studies suggest that WM integrity, as well as alterations in functional

connectivity, may predict psychiatric risk. At the same time, molecular
markers, such as SNORD116 expression and hypothalamic hormone pro-
files, offer novel avenues for monitoring the efficacy of metabolic and be-
havioral interventions. The systematic incorporation of these biomarkers
into clinical practice stands to revolutionize treatment response evalua-
tion, enabling clinicians to tailor interventions with unprecedented accu-
racy and minimize the limitations of current trial-and-error prescribing
approaches. To fully realize the benefits of precision psychiatry in PWS,
urgent efforts are required to validate these biomarkers in large-scale
clinical trials and establish standardized protocols for their integration
into routine care. Patients will face prolonged diagnostic uncertainty and
suboptimal treatment outcomes without such advancements.

The convergence of multimodal data analysis, AI-driven predictive
modeling, and patient-derived neuronal models is poised to transform
clinical decision-making processes. By integrating extensive genetic
datasets, advanced neuroimaging modalities, and patient-specific iPSC-
derived neurons, clinicians can better understand disease progression,
anticipate patient-specific treatment responses, and optimize therapeu-
tic interventions accordingly. The potential to evaluate pharmacological
agents using iPSC-derived neurons, for instance, presents an unprece-
dented opportunity to anticipate patient-specific responses prior to clin-
ical administration, reducing adverse effects and expediting the path to-
ward effective treatments.

Future therapeutic innovations promise to transcend mere symptom
management, addressing the underlying neurobiological mechanisms of
PWS. Advances in epigenetic modulation, CRISPR-based gene therapies,
and targeted neuropharmacological interventions may yield long-term
solutions for metabolic and psychiatric manifestations. Nonetheless,
translating these innovations into clinical practice necessitates rigorous
validation, standardized trial designs, and an interdisciplinary approach
synthesizing neuroscience, genetics, and computational biology.

As we move toward an era of precision medicine, the challenge now
lies in seamlessly integrating these discoveries into routine clinical prac-
tice. Future research must prioritize the development of standardized,
scalable frameworks that bridge cutting-edge neurogenetic insights with
real-world patient care. By fostering this interdisciplinary and transla-
tional approach, we can redefine the standard of care for PWS, ultimately
transforming patient outcomes and paving the way for individualized
therapeutic strategies that extend beyond current treatment paradigms.

Materials and Methods
This state-of-the-art review was conducted through a systematic liter-
ature search on PubMed and ScienceDirect, two prominent biomedical
research databases. The search strategy utilized a combination of MeSH
(Medical Subject Headings) terms and free-text keywords to ensure thor-
ough coverage of pertinent studies. The MeSH terms selected included
Prader-Willi Syndrome, Autism Spectrum Disorder, Schizophrenia, and
Pluripotent Stem Cells. In addition, free-text keywords such as the 15q11-
q13 Chromosomal Region and Psychotic Spectrum Disorder were used
to include studies that might not be specifically indexed under specific
MeSH terms. Boolean operators (AND, OR) were implemented to refine
the search and enhance the retrieval of relevant information literature.

The selection criteria comprised peer-reviewed original research arti-
cles, systematic reviews, book chapters, and preprints, ensuring a com-
prehensive synthesis of existing knowledge. Studies were prioritized
based on their scientific rigor, relevance, and contributions to under-
standing PWS, including its neurodevelopmental and psychiatric impli-
cations and the role of iPSC models in uncovering disease mechanisms.
Foundational studies were included as needed to provide historical con-
text and enhance the interpretation of emerging findings.

Studies with small sample sizes, methodological limitations, or incon-
clusive results were thoroughly reviewed for their contributions to the
field. Rather than excluding such studies, they were discussed with ap-
propriate caveats, especially when they offered new insights or filled gaps
in the current literature. This strategy allowed for a balanced and critical
evaluation of the evidence, combining findings from genetics, neurobiol-
ogy, psychiatry, and stem cell research to provide a thorough interdisci-
plinary view of PWS and its related neuropsychiatric comorbidities.
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