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Neuropsychiatric disorders impact over 3 billion individuals globally, posing significant challenges due to their molecular complexity,
phenotypic diversity, and limited clinical translation of genetic insights. Advances in induced pluripotent stem cell (iPSC) technology offer
unprecedented opportunities to model these disorders in human-relevant contexts. Human iPSC-derived two-dimensional neurons and glia,
and three-dimensional organoids recapitulate key aspects of brain development and cellular functions, enabling the study of disease
mechanisms and therapeutic responses on the relevant genetic background. Pioneering studies have begun to demonstrate the potential of
iPSC models for precision medicine. However, translating these findings to clinical applications at scale requires robust validity assessments.
Building on established frameworks of construct, face, and predictive validity derived from animal models, this perspective examines their
application within an iPSC context. These approaches offer valuable insights to refine iPSC-based modeling systems and enhance their
translational relevance as well as address the complexities of modeling neuropsychiatric disorders.
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Introduction
Neuropsychiatric disorders are a molecularly complex group of disorders
that impact over 3 billion individuals worldwide and profoundly shape the
social, economic, and personal well-being of those affected (1). Over the
past decade, significant strides have been made in uncovering the ge-
netic underpinnings of both polygenic and monogenic neuropsychiatric
disorders through genome-wide association studies, as well as exon and
genome sequencing efforts. These advances have enhanced our under-
standing of the mechanisms underlying certain conditions, particularly
those caused by monogenic factors. Despite this progress, a consider-
able gap persists between these genetic discoveries and their clinical
application. Insights into disease mechanisms and potential therapeutic
strategies have yet to be fully translated into effective and routine clinical
practice, for example, prediction of drug response, outcome, and new
therapeutic targets. Moreover, the substantial phenotypic diversity and
varied treatment responses seen in these disorders underscore the ur-
gent need for precision medicine approaches—not only to design tar-
geted therapies but also to develop robust models for understanding
disease mechanisms at the individual level.

The diverse clinical manifestations, complex etiology, and limited ac-
cess to patient brain tissue have curtailed an effective understanding of
the molecular framework of many of these disorders. Although animal
models of relevance for neuropsychiatric disorders provide valuable in-
sights into multiple aspects of these conditions, they are limited by in-
herent interspecies differences, including variations in the timing and tra-
jectory of brain development, tissue architecture, and cell-type specificity
(2). Human-derived induced pluripotent stem cell (iPSC) disease model-
ing offers an unprecedented opportunity to study neuropsychiatric dis-
ease within the appropriate genetic context and tissue or cell types of
interest. Accumulating evidence suggests that iPSC-derived models have
the potential to recapitulate various molecular and cellular features of
neuropsychiatric disease (3–5). Thus far, protocols for reliably generat-
ing specific cell types have been established including glial cells such as
astrocytes, oligodendrocytes, and microglia and neuronal subtypes such
as glutamatergic, GABAergic, dopaminergic, serotonergic, cholinergic,
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and motor neurons (6–14). These iPSC-derived neural cell types can be
cultured alone or in combination, in two-dimensional (2D) or three-
dimensional (3D) organoids, to give rise to more complex systems to study
various parameters such as excitatory-inhibitory balance or model brain
regions of interest. Assessment of cellular morphology, functional elec-
trophysiological parameters, protein expression, organelle structure, and
transcriptional profile can be used to characterize iPSC-derived models of
neural cell types.

Protocols pioneered by the Sasai group enabling the development of
3D optic cup (15) and cortical structures (16), laid the foundation for
modeling embryonic development in 3D using embryonic and iPSC cells.
Human iPSC-derived 3D cultures of neural development recapitulate key
aspects of human brain development including self-organizing neural ar-
chitecture, cell type formation, some electrophysiological parameters,
and precise spatiotemporal signaling to establish regional identity. Tran-
scriptomic and proteomic studies of iPSC-derived brain models indicate
that these models display expression profiles akin to human fetal brain
(17–20) between 8 and 16 weeks postconception (21) with neuronal
classes from diverse developmental stages with heterogeneous cell in-
trinsic maturation states (22, 23). Disease modeling with organoids is
complex but holds the potential to bridge the gap between humans and
animal models, offering valuable insights into disease mechanisms and
treatment strategies. Brain organoids can be used to assess known ge-
netic risk factors for structure brain defections such as macrocephaly and
microcephaly and screen potential therapeutic agents, as was demon-
strated for Angelman syndrome where pharmaceutical attenuation of
potassium channel activity with Paxillin normalized neuronal excitability
(24).

iPSC technology circumvents many obstacles currently impeding
progress toward developing effective therapies for psychiatric illness. For
the first time, we have the opportunity to track the developmental trajec-
tory of neuropsychiatric disorders, investigate the role of genetic back-
ground, and study disease material throughout disease progression—
rather than relying on postmortem samples taken at the end stage of
disease. This approach allows us to examine disease dynamics in real time
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Figure 1. Interdependency of construct, face, and predictive validity. Construct, face, and predictive validity are highly interdependent. Depending on the avail-
able information, a model system can be built starting at any of the three validities. For example, if a patient’s response to medication (predictive validity) and
the appropriate in vitro measurement (face validity) are known, this can be used to define what cell types are needed (construct validity) to accurately model a
neuropsychiatric disorder. By working closely together with clinicians, relevant patient information, like EEGs or questionnaires, can be informative to generate
a patient iPSC-derived model system that has high construct, face, and predictive validity.

for fetal neurodevelopment (23, 25). However, while these advancements
are promising, they also present challenges—many of which are shared
with animal models. Of particular concern, how can we determine the va-
lidity of the chosen models and readouts to enable effective translation?
This question is particularly pressing in the iPSC field, where bridging the
translational gap remains a primary goal. To address this, we can draw
valuable insights from the validity frameworks already established for
animal models and by adapting such a framework, we may uncover so-
lutions to ensure more reliable and impactful translational outcomes for
iPSC models.

Classically animal models have been held to a multidimensional set
of criteria of validities to be considered a relevant interface for human
pathology, namely construct, face and predictive validity. The definition of
construct validity in animal research is complex and the views on what it
exactly entails are dependent on the author as has been extensively sum-
marized in Lemoine and Belzung (2011). For iPCS-derived model systems,
we define construct validity as follows: (1) The model system has the cor-
rect genetic etiology, for example, a relevant mutation in the causative
gene for a specific disease, or a high or low polygenic risk score; (2) The
biological processes underlying the disease in the relevant cell types are
present (26–28). Face validity refers to the similarities between the model
and the condition being modeled or essentially the extent to which a
model measures the concept it is intended to measure and is therefore
linked to assay validating readouts of cell-based assays. Predictive valid-
ity in animal science has traditionally been defined in one of two ways.
Most commonly, predictive validity emphasizes the similarity in treat-
ment responses between patients and the model system. However, it is
sometimes defined as the model’s ability to predict specific markers of
the disease, referring to biomarkers used to monitor the disorder’s pro-
gression (26). To achieve high predictive validity, both high construct va-
lidity and high face validity are essential. In this Perspectives, we assess
the potential of this framework to be applied in the context of iPSC stud-
ies of neuropsychiatric disorders and explore how these validities pertain
to such research. Below, we examine the three types of validity in detail
(Figure 1).

Construct Validity
Construct validity defines the extent to which an assessment accu-
rately measures the concept it was designed to evaluate. For iPSC-based

modeling of psychiatric diseases, two critical aspects underpin construct
validity: the genetic framework and cell-type specificity. iPSCs can be gen-
erated from healthy individuals where a relevant mutation can be intro-
duced using CRISPR-Cas9, or directly from patient material. The primary
advantage of using patient-derived iPSCs is that the patient’s genetic
background is retained during reprogramming. However, it is important
to acknowledge that genomic instability and genetic alterations may oc-
cur during or after the reprogramming process, where iPSCs generated via
genome integrating methods have higher incidences of genomic aberra-
tions compared to those generated by nonintegrating methods (29, 30).
These changes include chromosomal aneuploidy, copy-number variants,
or point mutations and may provide mutated iPSCs with a growth advan-
tage during extended culture, thus introducing passage-dependent ef-
fects (31). In addition, iPSCs derived from fibroblasts accumulate more
mutations and chromosomal abnormalities due to repeated exposure to
ultraviolet light (32). iPSCs would therefore benefit from regular assess-
ment of genomic integrity, to ensure they remain effective for disease
modeling. This consideration is particularly pertinent for polygenic neu-
ropsychiatric disorders, whose complexity is challenging to replicate in
alternative models, underscoring the unique relevance of patient-derived
iPSCs (33).

Experimental designs in iPSC studies generally employ either case-
control approaches or gene-editing methods using isogenic controls. A
key advantage of case-control studies is that the groups can be defined
solely on a patient’s clinical features or their polygenic risk score, elim-
inating the need to identify the exact causative mutations. However, a
notable limitation of case-control studies is that they typically have lim-
ited cohort sizes, resulting in low statistical power. The use of multiple
isogenic iPSC-lines can help mitigate this limitation for rare cases with
monogenic contributions (34). While isogenic iPSC-based study designs
are widely accepted as the gold standard, a major disadvantage is that
there is no patient associated with an isogenic iPSC, limiting their trans-
lational applicability.

iPSCs can be differentiated into nearly any brain cell type, providing
extensive versatility in neuropsychiatric disease modeling. However, this
flexibility introduces challenges in selecting the appropriate cell types to
include. Decisions about the model system are often driven by pragmatic
considerations, such as speed, homogeneity, and reproducibility. iPSC-
derived models range from simple 2D systems involving a single cell type

Perspective
Kolsters et al.

https://doi.org/10.61373/gp025p.0074
28

GENOMIC PSYCHIATRY
Genomic Press

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-10-24 via O
pen Access. C

C
 BY 4.0 https://creativecom

m
ons.org/licenses/by/4.0/

https://gp.genomicpress.com
https://doi.org/10.61373/gp025p.0074


gp.genomicpress.com

to complex 3D systems comprising diverse cell types. Simpler 2D mod-
els offer advantages in terms of rapid generation, uniformity, and repro-
ducibility, making them ideal for high-throughput applications. However,
they may lack the cellular complexity required to capture the full patho-
physiology of neuropsychiatric disorders. Conversely, 3D models, while
more time-intensive and variable, provide a more comprehensive repre-
sentation of cellular interactions and the microenvironment, which are
critical for understanding multifaceted disease mechanisms. Selecting
the appropriate model system for a study requires careful consideration
of the specific research question and available data. One valuable source
of information is postmortem analysis. For example, a recent study using
postmortem cortical brain samples from patients with autism spectrum
disorder (ASD) and controls found that most alterations in neuronal gene
expression were localized to glutamatergic neurons in the superficial lay-
ers of the cortex (35). Alternatively, insights can also be derived from the
behavioral symptoms associated with a disorder and the regions of the
brain implicated in these symptoms, or from the known mechanisms of
action of medications used in treatment. For instance, in attention-deficit
hyperactivity disorder, dysfunction is observed in areas such as the su-
perior longitudinal fasciculus and cortico-limbic structures, and medica-
tions like methylphenidate are known to work by blocking presynaptic
dopamine and norepinephrine transporters (36, 37). Additionally, single-
cell data can provide further insights on the developmental trajectory of
a specific disease gene (38).

In the case of monogenic neuropsychiatric disorders, selecting the ap-
propriate model system often depends on identifying which cell types
express the gene of interest. For example, Timothy syndrome, caused by
mutations in CACNA1C and associated with autism, bipolar disorder, and
schizophrenia (SCZ) (39), exhibits the highest expression of CACNA1C in
both excitatory and inhibitory neurons (40). Consequently, research using
both mouse and iPSC-derived models has primarily focused on neuronal
function. These iPSC-derived models are typically generated through an
intermediate neural progenitor cell (NPC) stage, resulting in a system
that includes a variety of cell types, including progenitors and multiple
neuronal subtypes (41–43). However, these models often lack sufficient
glial cells, which are crucial for neuronal development and function. This
limitation could hinder the model’s ability to fully represent the biologi-
cal processes impacted by CACNA1C mutations. Future models incorpo-
rating glial cell populations could offer a more comprehensive under-
standing of CACNA1C deficiency. While patient iPSC-derived glial cells
would be ideal to fully understand the full pathophysiology, healthy ro-
dent glial cells have also been shown to support human neuronal func-
tion, as described by Frega et al., and can aid in characterizing the neu-
ronal phenotype (14). One potential strategy is creating a chimeric model
by transplanting human iPSC-derived organoids into rodent brains, as
demonstrated by Chen et al. (2024). In this study, CACNA1C-deficient cor-
tical organoids were transplanted into the somatosensory cortex of new-
born rats to integrate into sensory and motivation-related circuits and
evaluate an Antisense oligonucleotide (ASO)-based treatment strategy
(44). This approach highlights the potential of combining in vitro patient-
derived models with in vivo systems to study neuropsychiatric diseases,
particularly when animal models fail to fully capture human genetics
and pathophysiology. However, using animal-derived glial cells cannot ex-
clude human-specific roles of a gene, as even low gene expression may
still contribute to development of a disease.

Another example can be found in SETD1A, a gene with a significant,
genome-wide association to SCZ (45, 46). All preclinical models, includ-
ing both mouse and iPSC-derived models, for SETD1A have focused the
role of SETD1A dysfunction in neurons (47). While it is true that, in the
mouse brain, Setd1a is most expressed by neurons followed closely by
astrocytes, in the human brain astrocytes have higher SETD1A expres-
sion followed closely by neurons (40, 48). For this reason, it follows logi-
cally that iPSC-derived model systems with good construct validity should
contain both neurons and astrocytes with a SETD1A deficiency. To date,
there are two studies using different iPSC-derived neuronal models, how-
ever, neither study has included SETD1A-deficient astrocytes (49, 50).
While these studies have provided valuable insights into SETD1A defi-
ciency in neurons, a key advantage of iPSC-based models is the capacity to

incorporate diverse cell types. For SETD1A research, this means that a fu-
ture model could integrate iPSC-derived astrocytes, allowing for a more
comprehensive investigation into SETD1A-related pathology.

Although the concept of construct validity may seem straightforward
when a disorder has a clear genetic cause, many neuropsychiatric disor-
ders are understood to be highly polygenic, involving thousands of com-
mon and rare genetic variants (51). These genetic factors, combined with
environmental risk factors, increase the likelihood for an individual to de-
velop a neuropsychiatric condition. While the use of patient-derived iPSCs
addresses the genetic etiology aspect of construct validity, identifying the
relevant cell types and biological processes remains challenging when the
specific genes involved in the disorder are unknown. In recent years, the
Ziller lab has addressed this issue using a large cohort (n = 104) of iPSCs
from healthy controls and individuals with SCZ, bipolar disorder, and ma-
jor depressive disorder. They found differences in alternative polyadeny-
lation (APA) in the 3’ untranslated region of many transcripts related to
synapse biology between iPSC-derived neurons from patients with SCZ
and healthy donors. These differences were associated with a reduction in
synaptic density on the cellular level. In addition, they showed that 3’APA
was highly correlated with SCZ polygenic risk and concluded that the cu-
mulative effects of polygenic risk converge on 3’APA as a common molecu-
lar mechanism underlying synaptic impairment in SCZ (52). An alternative
strategy could be to use models that encompass most cell types, like cere-
bral organoids, which may provide a more comprehensive understanding
of polygenic risk in diverse cellular populations. In addition, it is impor-
tant to calculate the polygenic risk score for each individual, not just for
the disorder of interest.

Face Validity
Face validity is essentially the degree of descriptive similarity between
a model and an individual affected by a neurobehavioral disorder. This
concept was initially defined within the context of depression by Wilner
to encompass both treatment and symptomatic features, specifically the
response to pharmacological intervention and the experiential profile
(27). Geyer and Markou, and Sarter and Bruno, expounded upon face va-
lidity to mean “the degree of phenomenological similarity between the
model and the disorder to be modeled” (53, 54). This suggests that face
validity corresponds to the ability of a model system to mimic (gener-
ally behavioral or cognitive) diagnostic criteria of psychiatric conditions,
yet it remains largely uncharacterized at the molecular level. As psychi-
atric disorders are defined primarily based on behavior, something iPSCs
are inherently unable to model, the focus of translational models must
shift to the molecular and cellular level. Despite this necessity for phys-
iological and molecular profiling, we currently lack clear biomarkers and
cellular profiles of neuropsychiatric disorders. Additionally, for most stud-
ies it is difficult to assess face validity since there is often no golden stan-
dard data, such as fetal brain tissue from the case of interest.

Despite challenges, there are credible examples of face validity within
iPSC-derived models that demonstrate dimensions of neuropsychiatric
disorders in large part due to the inclusion of patient data. de Vrij
et al. adopted a family-based patient assessment approach for genetic
discovery in SCZ coupled with functional analysis using patient-derived
iPSCs to define variants in chondroitin sulfate proteoglycan 4 (CSPG4), an
oligodendrocyte progenitor specific marker, as a potential cause of famil-
ial SCZ (55). This approach allowed researchers to characterize genetic
and functional evidence of oligodendrocyte progenitor cell dysfunction
in SCZ. In some cases, in vivo measurements in patients can be translated
into molecular insights. 22q11.2 Deletion syndrome is associated with in-
creased SCZ risk, in a pilot study, dopamine synthesis capacity was as-
sessed via 18F-DOPA PET imaging in patients with 22q11.2 deletions. By
generating iPSC-derived dopaminergic neurons from these patients, they
observed alterations in gene expression related to dopamine metabolism
and signaling, with differences noted between 22q11.2 hiPSC lines corre-
sponding to distinct clinical presentations (56) suggesting that dopamine
metabolism dysfunction may contribute to SCZ.

Another potential strategy to circumvent the absence of behavior
modeling is to focus on the underlying neuronal patterns that drive the
behavior. For example, Romero-González et al. recently demonstrated
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that in a cohort of children with ASD, those with greater impairment in
executive functioning also exhibited abnormal epileptiform electroen-
cephalography (EEG) activity (57). EEG abnormalities in patients are sig-
nificantly elevated in patients with neuropsychiatric disorders, and cur-
rent research is evaluating the use of EEG as a diagnostic tool (58, 59).
Similar to EEGs, which measure the summation of synchronous activity in
the brain (60), the synchronous activity of iPSC-derived neuronal models
can be assessed using microelectrode arrays (MEAs). MEAs can be used
to study neuronal activity patterns relevant to human neurological con-
ditions in both 2D networks and brain organoids (61–63). For instance,
Trujillo et al. showed that cortical organoids have similar developmental
trajectories, specifically pertaining to frequency of oscillations and dura-
tion of events (63), in their functional neural network activity as those
observed in neonatal human EEGs (64). These results indicate that in-
terrogating developmental oscillatory patterns in neuropsychiatric and
developmental disorders may offer valuable perspectives into both nor-
mal and abnormal brain development and function. These insights, cou-
pled with the findings that administration of the benzodiazepine drug
diazepam—known to facilitate GABAergic signaling—to organoids de-
creased spiking complexity within neural circuits, suggest that both neu-
ral circuitry abnormalities and neuropsychotropic drugs can be assessed
via this platform (65).

Molecular insights into disease can be gleaned with the translation
of patient data into in vitro studies which can then be translated back
into the clinical setting. In ASD, Bruining et al. developed an algorithm
to estimate the excitation-inhibition (E/I) ratio using EEG to assess neu-
ral oscillations, the functional E/I ratio was capable of detecting E/I shifts
associated with pharmacological intervention in human EEG. E/I ratio pro-
foundly affect optimal processing of stimuli (66) and aberrancies therein
interrupt neuronal network dynamics and impair their function (67). This
approach was validated in nonmedicated children with ASD and in healthy
controls under pharmacological enhancement of GABAergic synaptic in-
hibition (68). Measuring the E/I ratio at the cellular level may provide a
translational link between patient data informed in vitro models and the
clinic. Additionally, using disease signatures of neural activity can offer in-
sights into assessments of neural circuitry in patient-derived organoids.
Using calcium imaging and extracellular recording to assess local field
potentials, Samarasinghe et al. demonstrated that brain organoids de-
rived from individuals with Rett syndrome (RTT), displayed complex cir-
cuitry dynamics akin to intact brain preparations and demonstrated a
deficit in low frequency oscillations and frequent epileptiform-like ac-
tivity (69). Additionally, they discovered that the antiapoptotic, p53 in-
hibitor pifithrin-α rescued many of these physiological parameters within
the organoid model.

Additional examples of face validity within iPSC-derived neural sys-
tems include the ability to recapitulate macrocephaly and microcephaly in
neural organoids, which is validated by their clear structural readout. Ur-
resti et al. demonstrated that cortical organoid model the macrocephalic
and microcephalic effects of the reciprocal deletion and duplication, re-
spectively, of the 16p11.2 region associated with ASD (70). Morpholog-
ical measures of the brain could also serve this purpose. For Williams
syndrome, Chailangkarn et al. generated patient iPSC-derived NPCs and
cortical neurons, demonstrating that increased NPC proliferation and
apoptosis could be traced to a single gene, FZD9, within the Williams-
Beuren Syndrome Critical Region. These findings were further sup-
ported by morphological abnormalities observed in postmortem brain
tissue, particularly in neurons from cortical layers V and VI (71). Non-
neuropsychiatric disorders, including epilepsy and neurodegenerative
diseases, offer a potentially more straightforward approach for mod-
elling diseases using iPSCs, owing to their distinct cellular phenotypes
and potential for electrophysiological readouts. However, these models
face shared challenges with neuropsychiatric disorders that need to be
fully realized for accurate disease modeling, such as reflecting develop-
mental timepoints that may precede disease onset by decades.

Predictive Validity
To assess the validity of a model system, the inclusion of positive and
negative controls is essential. Considering that there are currently no

known biomarkers for neuropsychiatric disorders, we will define predic-
tive validity as the ability of the model system to replicate treatment re-
sponses observed in patients using relevant measurements. For example,
lithium has been widely used to treat mania in bipolar disorder. Mertens et
al. generated iPSC-derived hippocampal dentate gyrus granule-like neu-
ronal networks from both lithium responders and nonresponders. Their
study showed that lithium treatment induced significant changes in the
neuronal networks of lithium responders, while it had no apparent effect
on the neuronal networks of nonresponders (72). Interestingly, this sug-
gests that a model containing only iPSC-derived dentate gyrus cells could
suffice for building a predictive model for bipolar disorder, as it effec-
tively differentiates between lithium responders and nonresponders. This
study highlights the value of incorporating clinical insights at the individ-
ual level to guide experimental design. An extension of this study showed
this could also be replicated in cortical organoids derived from lithium
responders and nonresponders (73). Instead of prioritizing construct and
face validity first, identifying known medication responders and nonre-
sponders can help determine the most suitable iPSC-derived model for
a disorder. It is worth noting that it may be difficult to accurately define
treatment-resistant groups and therefore, close collaboration with clini-
cians and use of established guidelines or standards for diagnosing treat-
ment resistance is advantageous.

Another study that utilized this concept used iPSCs from clozapine re-
sponders and nonresponders. Here, they showed that clozapine increased
activity in neuronal networks from both control and clozapine respon-
ders, while there was no effect for clozapine nonresponders (74). Unfor-
tunately, the available clinical information is not always applied effec-
tively. In one study, researchers used iPSC-derived neuronal cultures from
a patient that clinically has no response to clozapine, yet they did not in-
clude clozapine as a positive control (75). In contrast, there are instances
where clinical information is unavailable. For example, a study aiming
to model disease predisposition used iPSCs lines from multiple patients
attempted to investigate whether antipsychotic manipulation could res-
cue deficits in NPC migration during in vitro neurodevelopment. However,
the absence of detailed medication histories made it unclear whether the
tested medications had been clinically effective for those patients (76).
That being said, the readouts used in this study did not reflect aspects of
adult treatment efficacy, suggesting limitations in the model’s face valid-
ity and highlighting how all three validities contribute to a valid stem cell
model.

Recently, the US Food and Drug Administration (FDA) approved a new
therapy for RTT, consisting of a peptide fragment of insulin-like growth
factor 1 (IGF-1) which was shown to restore multiple aspects of RTT
pathology in a mouse model (77, 78). This information was later used
to develop a predictive iPSC-derived model for RTT by Marchetto et al.
(2015), who generated both NPCs and neurons from clinically affected fe-
male patients with RTT. Here, they showed that RTT patient-derived neu-
rons have reduced number of synapses and dendritic spines, as was previ-
ously shown in the mouse model. In addition, IGF-1 treatment was able to
recover the synapse number back to control levels (79), suggesting that
this iPSC-derived model can be used for translational purposes and dis-
covery of additional novel treatments for RTT.

To assess the potential for precision therapy in early infantile epileptic
encephalopathy type 13, also known as SCN8A-related epilepsy, Tidball
et al. treated iPSC-derived excitatory neuron from three patients with
missense variants in SCN8A (80). They were able to show within their
model system that iPSC-derived neurons displayed altered sodium cur-
rents and treatment with riluzole, a drug used to treat amyotrophic lateral
sclerosis, reduced spontaneous firing and heightened the action potential
firing threshold. As a result of this study, riluzole was prescribed off-label
to 2 patients whose iPSC-derived neurons demonstrated responsiveness.

Many neuropsychiatric disorders are managed through antipsychotics,
antidepressants, mood stabilizers, and stimulants. Despite significant ef-
forts, the current psychiatric medications show little improvement in
effectiveness or functional outcomes compared to the original treat-
ments introduced over 50 years (81). The development of patient-derived
iPSC-based model systems offer the potential for testing future novel
medications in a more personalized manner. For example, the FDA has
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recently approved a new therapy for schizophrenia (82). Inclusion of
known responders and nonresponders from these clinical trials in iPSC
studies could validate these models, resulting in a model that is more
suited for forward translation and discovery of new therapeutic ap-
proaches. To achieve this, it is essential to establish a model system with
high predictive validity. However, before a model can provide meaningful
insights into the efficacy of new medications, its predictive validity must
be established using positive and negative controls based on a patient’s
medical history at the individual level.

Discussion
One limitation of iPSC-derived model systems is their restriction to early
prenatal neurodevelopmental stages. For instance, on a gene expression
level, brain organoids replicate cell states normally observed in the first
and second trimester but generally fail to capture later developmental
stages (23, 83). Similarly, 2D neuronal cultures most closely resemble fe-
tal brain tissue (17, 84, 85). Considering that neuropsychiatric disorders
can emerge anywhere from childhood through adulthood, iPSC-derived
models are therefore best suited to study disease predisposition rather
than fully modeling the disease itself. A critical challenge in iPSC-based
research is therefore identifying measurable features that are related
to clinical manifestations of the disorder. For example, neuropsychiatric
disorders are primarily defined by behavioral characteristics, a trait that
iPSC-derived model systems inherently cannot replicate. This limitation
not only affects the ability to model these disorders but also complicates
the validation of these models and requires alternative approaches to
capture this aspect of the disorder. One potential strategy could be to
compare electrophysiological MEA recordings from patient iPSC-derived
neuronal models to a control cohort to reveal neuronal mechanisms un-
derlying the behavioral symptoms, functioning as an effort to capture a
phenomenon that iPSCs are inherently unable to model and providing a
basis for model validation. Another possible approach is to analyze the
transcriptional signature underlying brain activity. Although establishing
a direct correlation between brain activity and transcriptomics in the hu-
man brain is ethically and clinically challenging, Bahl et al. recently de-
veloped a deep learning toolbox designed to predict neuronal activation
based on transcriptomic signals (86). Likewise, transcriptional signatures
of iPSC-derived neuronal networks can be directly integrated with elec-
trophysiological profiling using MEA recordings (87). This integration en-
ables the identification of disorder-related pathways and opens opportu-
nities for future therapeutic strategies.

The development of iPSC-derived models in recent years has revo-
lutionized the study of human brain development, providing opportuni-
ties to model complex disorders in vitro. However, these advancements
have also introduced new challenges, particularly in selecting the most
appropriate model to address specific research questions. Drawing on
examples from animal models of neuropsychiatric disorders, the well-
established validity framework can serve as a foundation for selecting the
most suited iPSC model. This framework is built upon three key types of
validity, specifically construct, face, and predictive validity, each of which
plays a critical role in model development and is interdependent. Con-
ceptually, any of the three validities could serve as a starting point. For
instance, in the case of monogenic disorders, it would be logical to start
with construct validity. Alternatively, clinical data could be informative
for the predictive validity, particularly when information about known re-
sponders and non-responders to a specific medication is available. With
proper rigor and validity standards, iPSC modeling of neuropsychiatric
disorders stands to provide insights that contribute to elucidating disease
mechanisms as well as prognostic and preventative indicators of disease.
Predictive iPSC modeling of disease would benefit from the synthesis of
data from patients and data gleaned from current cellular models to gen-
erate prediction models of biological patterns and mechanisms and how
they relate to disease.
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