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Early infant white matter tract microstructure predictors of subsequent change
in emotionality and emotional regulation

Yicheng Zhang1,2 , Layla Banihashemi1,2 , Amelia Versace2, Alyssa Samolyk2, Mahmood Abdelkader2, Megan Taylor2, Gabrielle English2,
Vanessa J. Schmithorst3, Vincent K. Lee1,3, Richelle Stiffler2, Haris Aslam2, Alison E. Hipwell2, and Mary L. Phillips2

There are rapid changes in negative and positive emotionality (NE, PE) and emotional regulation (e.g., soothability) during the first year of life.
Understanding the neural basis of these changes during maturation can enhance the understanding of the etiology of early psychopathology.
Our goal was to determine how measures of white matter (WM) microstructure in tracts connecting key emotion-related neural networks,
including the forceps minor (FM), cingulum bundle (CB), and uncinate fasciculus interconnecting the default mode network (DMN), salience
network (SN), and central executive network (CEN), can predict developmental change in infant emotionality and emotional regulation. We
used Neurite Orientation Dispersion and Density Imaging (NODDI) measures together with conventional diffusion tensor metrics to examine
WM tract microstructure and fiber collinearity in the primary sample (n = 95), and modeled each WM feature with caregiver-reported infant NE,
PE, and soothability, with infant and caregiver sociodemographic factors as covariates. In 3-month infants, higher neurite dispersion and lower
longitudinal fiber alignment in the FM were associated with a larger increase in NE from 3 to 9 months of age, suggesting that greater
integration of the DMN, SN, and CEN leads to a larger subsequent increase in NE; while higher neurite density and dispersion as well as lower
WM longitudinal alignment in the left CB were associated with a larger increase in PE, suggesting that greater integration within the CEN leads
to increasing PE over time. In addition, higher neurite dispersion and lower WM longitudinal alignment in the left CB were associated with a
larger increase in soothability. Associations among diffusion tensor measures and changes in infant emotionality and emotional regulation
measures were replicated in an independent test sample (n = 44). These findings suggest that early infant WM microstructural features support
infant emotionality and emotional regulation development and could represent early biomarkers of future emotional and behavioral disorders.
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Introduction
Negative and positive forms of emotionality, along with emotional regu-
lation capacities such as soothability, can be reliably assessed in infants
within the first months of life. The development of negative emotional-
ity (NE) tends to show relative stability with a trend to increase through-
out the first year (1–7); positive emotionality (PE) undergoes rapid in-
crease during this period (8); whereas emotional regulation capacities
develop most dramatically in the first few years (9) and continue into
adulthood (10). Previous research has shown that these early indices of
emotionality and emotional regulation can predict future emotional be-
havioral outcomes (11–15). For example, high NE is associated with an
increased risk for future affective and behavioral disorders (16–22), low
PE is linked to a higher risk for future behavioral inhibition and depres-
sion (23–28), and low soothability has been linked to future aggression,
disruptive behavior, and social engagement problems (29–31). Therefore,
identifying objective markers of emotionality and emotional regulation
development could provide valuable insights into the etiology of early
psychopathology.

White matter (WM) tracts are identifiable early in neonates and un-
dergo rapid development throughout infancy. Several WM tracts connect
key regions within large-scale networks that are critical to emotional
processing and regulation, including the default mode network (DMN),
which supports self-referential processing (32, 33), the salience network
(SN), which guides attention toward salient stimuli (33, 34), and the cen-
tral executive network (CEN), subserving cognitive control (35). These
WM tracts include the cingulum bundle (CB), interconnecting prefrontal,
cingulate, and parietal cortices, which form connections within and
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between the DMN and CEN; the uncinate fasciculus (UF), interconnecting
prefrontal and anterior temporal structures with the amygdala, and in-
tegrating pathways within the DMN and SN; and the forceps minor (FM)
of the corpus callosum, interconnecting prefrontal cortical regions, and
connecting the DMN, SN, and CEN across hemispheres (36, 37).

Neurite Orientation Dispersion and Density Imaging (NODDI) is a rel-
atively new method of measuring WM tract microstructure. This method
uses a multicompartmental model of multishell diffusion MRI (dMRI) that
provides higher intracellular specificity than traditional diffusion ten-
sor models by separating intraneuritic and extraneuritic components and
free water within a dMRI voxel (38). This method provides estimations of
microstructural integrity and myelination using the neurite density index
(NDI) and pruning and dispersion using the orientation dispersion index
(ODI). Very few studies have examined relationships among NODDI met-
rics of WM tract microstructure and emotionality or other clinical out-
comes in infant, children, or adults. One previous study in young adults
showed that first episode psychosis patients had lower NDI in the FM and
higher ODI in the UF and FM (39). Furthermore, lower NDI in the FM and
CB, along with higher ODI in the CB, were linked with a longer duration
of untreated psychosis (39), a dimension of psychopathology character-
ized by disrupted cognitive and emotional processing. Another study in in-
fants reported that lower 1-month infant UF microstructure, assessed us-
ing combined conventional diffusion tensor and NODDI metrics (including
NDI, ODI, FA, MD, AD, and RD), was associated with higher 6-month infant
fear before correcting for multiple comparisons (40). These findings high-
light the potential of using NODDI metrics as proxies for microstructural
features in emotion-related WM tracts. Given the above findings linking
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Table 1. Summary of infant-caregiver dyads characteristics for analyses

Primary Test
3-month 9-month 3-month 9-month
Mean ± SD (Min–Max) Mean ± SD (Min–Max) Mean ± SD (Min–Max) Mean ± SD (Min–Max)

Total infant-caregiver pairs 95 44
Infant

Age, weeks 14.74 ± 2.72 (10–22) 41.68 ± 4.74 (35–67) 13.59 ± 2.66 (9–19) 39.2 ± 3.14 (36–48)
Biological sex, male/female 56/39 20/24

Caregiver
Caregiver age, years 31.80 ± 4.67 (18–42) — 22.66 ± 1.41 (19–25) —
Sum of public assistance types 0.94 ± 1.43 (0–5) — 3.25 ± 1.43 (0–7) —
EPDS depressed mood 5.27 ± 4.8 (0–22) 5.41 ± 4.52 (0–18) 5.98 ± 5.87 (0–24) 5.55 ± 4.60 (0–22)
PAI BOR affective instability 4.00 ± 3.34 (0–13) 4.32 ± 3.79 (0–16) 6.53 ± 2.81 (0–12) —
STAI state anxiety 29.16 ± 8.81 (20–61) 27.57 ± 8.45 (20–58) 31.66 ± 9.52 (20–67) 27.89 ± 6.77 (20–50)
STAI trait anxiety 34.01 ± 10.87 (20–69) 33.79 ± 10.64 (21–70) 34.66 ± 8.41 (21–59) 35.05 ± 7.82 (22–55)

Emotional outcomes
IBQ NE 2.90 ± 0.67 (1.63–4.38) 3.18 ± 0.72 (1.67–5.35) 3.00 ± 0.71 (1.49–4.38) 3.56 ± 0.76 (1.85–5.51)
IBQ PE 3.62 ± 1.27 (1–7) 5.50 ± 0.62 (3.79–6.93) 4.90 ± 1.16 (1.93–6.79) 5.49 ± 0.97 (1.55–6.79)
IBQ soothability 5.41 ± 0.71 (3.71–7) 5.58 ± 0.84 (3.29–7) 5.01 ± 0.78 (3.86–7) 5.12 ± 0.73 (4–6.71)

lower NDI and higher ODI in WM tracts with worse emotional outcomes,
it is possible that lower NDI and higher ODI in WM tracts connecting neu-
ral regions important for emotional regulation might be associated with
higher levels of infant emotionality, especially higher NE. While diffusion
tensor imaging has been more commonly used in research to examine WM
tract microstructure and fiber collinearity, more research is needed to ex-
amine how NODDI and diffusion tensor metrics can be used in infancy to
identify indices of WM tract microstructure and fiber collinearity associ-
ated with emotional behaviors that represent transdiagnostic risk factors.

We previously reported that lower UF and FM structural integrity
measured using normalized quantitative anisotropy, a proxy of directional
diffusion, and fractional anisotropy (FA), a proxy measure of WM fiber
density in the longitudinal relative to the transverse direction, in 3-month
infants predicted greater NE at 9 months (41). Moreover, our recent work
demonstrates that greater increases in right UF, FM, and left CB ODI from
3 to 9 months are associated with disrupted development of emotional
regulation during the same period, while a greater increase in right UF
NDI is linked to a smaller increase in PE in the same timeframe (42). To
our knowledge, however, no study has examined the extent to which in-
fant WM tract microstructure predicts developmental changes in emo-
tionality or emotional regulation. The aim of our study was thus to de-
termine the extent to which NODDI indices of WM microstructure predict
change in emotionality and emotional regulation from 3 to 9 months of
age. Given that early manifestations of emotionality and emotional reg-
ulation (43), as well as the onset of neural functional specialization for
negative emotion processing (44), are observable in 3-month infants, and
emotional dysregulation at 9 months of age can serve as an early indi-
cator of future behavioral and emotional problems (45–49), we chose to
study developmental changes in emotionality and emotional regulation
within this 3- to 9-month period. Based on the small number of extant
findings examining NODDI indices in infancy, we hypothesized that lower
NDI and/or higher ODI in the CB, UF, and FM in 3-month-old infants would
be associated with a greater increase in NE, a larger decrease or a smaller
increase in PE, and/or a larger decrease or a smaller increase in sootha-
bility, from 3 to 9 months of age. We used diffusion tensor indices, that
is, axial diffusivity (AD) as an indicator of longitudinal fiber alignment,
radial diffusivity (RD) as a measure of myelination integrity, and FA to
assess WM integrity measured as the balance between axial and radial
diffusion, as secondary measures of WM tract microstructure and fiber
collinearity to examine relationships among WM measures and changes
in emotionality and emotional regulation. We next examined relation-
ships among NODDI and diffusion tensor indices of WM microstructure to
determine congruence among the microstructure-emotionality and emo-
tional regulation relationships measured using these different indices.
Diffusion tensor measures were then examined in an independent test

sample in order to determine the extent to which WM microstructure-
emotionality/emotional regulation relationships could be replicated.

To account for external factors that impact WM neurodevelopment
(9, 50–57), we included sociodemographic and clinical measures, specif-
ically, caregiver age, and affective states (depression, anxiety, and
affective instability), along with infant age and biological sex, as covari-
ates when modeling the relationships between indices of WM tract mi-
crostructure and the development of infant emotionality and emotional
regulation.

Results
A total of 95 consented infant-caregiver dyads from the primary sam-
ple and 44 from the test sample meeting exclusion criteria had usable
3-month dMRI scans. Infant-caregiver dyads characteristics for analyses
were summarized in Table 1. Change in infant NE, PE, and soothability
from 3 to 9 months are plotted in Figure 1.

Associations Between 3-month WM NODDI Measures and
the 3-to-9-month Change in Infant Emotionality
Three-month FM ODI was positively correlated with the 3-to-9-month
change in NE (β = 0.334, r2 = 0.112, p = 0.0010, q = 0.020; Figure 2A;
parameters of models adjusted for covariates in Supplement), indicat-
ing that higher FM ODI was associated with a smaller decrease or larger
increase in NE. Three-month FM NDI was also positively correlated with
the 3-to-9-month change in NE (β = 0.224, r2 = 0.050, p = 0.0303; Sup-
plement Figure S1), but it did not survive the correction for multiple
comparisons.

Three-month left CB ODI was positively correlated with the 3-to-9-
month change in PE (β = 0.300, r2 = 0.090, p = 0.0037, q = 0.037;
Figure 2B; Supplement), indicating that higher left CB ODI was associated
with a larger increase in PE. Three-month left CB NDI was positively cor-
related with the 3-to-9-month change in PE (β = 0.283, r2 = 0.080, p =
0.0062, q = 0.042; Figure 2C; Supplement), indicating that higher left CB
NDI was associated with a larger increase in PE.

Associations Between 3-month WM NODDI Measures and the
3-to-9-month Change in Infant Emotional Regulation
Three-month left CB ODI was positively correlated with the 3-to-9-month
change in soothability (β = 0.218, r2 = 0.048, p = 0.0369; Figure 2D; Sup-
plement), indicating that higher left CB ODI was associated with a larger
increase in soothability.

Associations Between 3-month WM Diffusion Tensor Measures and
the 3-to-9-month Change in Infant Emotionality
Three-month FM AD was negatively correlated with the 3-to-9-month
change in NE (β = −0.295, r2 = 0.087, p = 0.0039; Figure 3A), indicating
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Figure 1. The 3-to-9-month development of infant NE, PE, and soothability.

that lower FM AD was associated with a smaller decrease or a larger
increase in NE.

Three-month left CB AD was negatively correlated with the 3-to-9-
month change in PE (β = −0.353, r2 = 0.125, p = 0.0006; Figure 3B), in-
dicating that lower left CB AD was associated with a larger increase in PE.

Associations Between 3-month WM Diffusion Tensor Measures and
the 3-to-9-month Change in Infant Emotional Regulation
Three-month left CB AD was negatively correlated with the 3-to-9-month
change in soothability (β = −0.254, r2 = 0.065, p = 0.0144; Figure 3C),
indicating that lower left CB AD was associated with a larger increase in
soothability over time.

Correlations Between 3-month NODDI and Diffusion Tensor Measures in
WM Tracts in Which Significant Relationships were Shown Among NODDI
Measures and Changes in NE, PE, and Soothability
FM ODI was negatively correlated with FM AD (ρ = −0.843, p < 0.0001),
and left CB ODI and NDI were negatively correlated with left CB AD
(ρ = −0.812, p < 0.0001; ρ = −0.733, p < 0.0001).

Validation of Significant WM Tract Measures—NE, PE, and Soothability
Development Relationships
The modeling accuracies in the test sample were: 3-month FM AD – 3-to-
9-month NE change root mean square error (RMSE) = 1.488; 3-month left
CB AD—3-to-9-month PE change RMSE = 1.027; 3-month left CB AD—3-
to-9-month soothability change RMSE = 1.282. These RMSE values reflect
good fits of the models in the test sample.

Discussion
In this study, we examined the extent to which early infant WM microstruc-
ture may shape changes in emotionality and emotional regulation. Under-
standing the neural mechanisms underlying these changes can provide
neural markers to better predict future behavioral and emotional chal-
lenges, as well as informing new intervention strategies and providing ob-
jective markers for monitoring response to these interventions. Our main
finding for NE development was that higher neurite dispersion in the FM
was associated with a smaller decrease or larger increase in NE from 3
to 9 months of age. Regarding PE development, higher neurite density
and dispersion in the left CB were associated with a larger increase in
PE. These findings indicate that specific microstructural features of WM
tracts interconnecting emotion-related neural regions can help predict
the subsequent development of emotionality and emotional regulation
in infancy.

Greater 3-month neurite dispersion, as indicated by greater ODI,
within the FM was significantly associated with a smaller decrease or
larger subsequent increase in NE. Greater 3-month FM ODI, a marker of
delayed pruning, can lead to greater functional integration of prefrontal
cortical regions within the DMN, SN, and CEN. This pattern of greater inte-
gration among prefrontal regions across hemispheres at 3 months might
then result in an increased influence of the DMN, supporting internaliz-
ing and attention to emotionally salient stimuli, on cognitive processes
such as executive function supported by the CEN, leading to reduced ca-
pacity for emotional regulation. This maladaptive increase in integration
across prefrontal regions, parallels our previous findings showing rela-
tionships between measures of functional integration among these large-
scale neural networks and future depression and mania risk in young
adults (58, 59), and children (60), and indicate that these relationships
emerge early in infancy.

Greater 3-month microstructural complexity, as indicated by higher
NDI and ODI, in the left CB was significantly associated with a larger sub-
sequent increase in PE. Tractography was performed predominantly on
the frontoparietal segment of the CB, which connects prefrontal, cingu-
late, and parietal cortices within the CEN (36, 37), making the anterior
part of the CB a major interconnecting bundle of the CEN. One interpre-
tation of this finding is thus that a greater extent of anatomical connec-
tivity and associated functional integration across prefrontal, cingulate,
and parietal cortices within the CEN at 3 months can enhance executive
function and emotional regulation capacity, resulting in higher levels of
PE longer-term. By contrast, lower neurite density and dispersion in the
anterior CB at this early age might reduce the ability to process positive
emotional experiences and might result in lower levels of PE longer-term.
Similarly, greater 3-month left CB ODI was associated with a larger 3-to-
9-month increase in soothability, providing further evidence that greater
integration within the frontoparietal region of the CB is associated with a
greater future capacity for emotional regulation, while lower integration
within this region of the CEN at 3 months of age can result in longer-term
impairments in emotional regulation capacity.

We previously reported that a greater 3-to-9-month increase in left
CB ODI is associated with a greater decrease rather than a greater in-
crease in soothability during the same period (42). Considering these and
the present findings together, we hypothesize that as the left CB tract
continues to develop during 3 to 9 months of age, there is an anterior
to posterior shift in microstructural development of the CB, during which
the posterior parietal portion of the CB increasingly integrates the DMN
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Figure 2. Covariate-corrected relationships between WM NODDI measures and the infant emotionality and emotional regulation development (solid lines as
regression lines, brighter shadowed area as prediction interval, and darker shadowed areas as corresponding 95% confidence intervals). (A) Association between
3-month FM ODI and 3-to-9-month NE changes. (B) Association between 3-month left CB ODI and 3-to-9-month PE changes. (C) Association between 3-month
left CB NDI and 3-to-9-month PE changes. (D) Association between 3-month left CB ODI and 3-to-9-month soothablity changes.

with the CEN, and other neural networks, resulting in greater interference
with emotional regulation capacity. Thus, our findings from the present
and this previous study together suggest a nonlinear relationship among
CB ODI and emotional regulation capacity during 3 to 9 months of age,
whereby greater left CB ODI at 3 months followed by a smaller increase,
or greater decrease, in ODI from 3 to 9 months are necessary for the de-
velopment of higher levels of emotional regulation capacity.

Significant negative correlations were observed among FM ODI and
AD, as well as left CB ODI and NDI with AD, suggesting that greater NDI
and ODI together might be associated with lower AD. These findings par-
allel previous reports that ODI may be negatively associated, while NDI
may show a smaller but positive correlation, with FA (38). This is because

higher ODI, indicating a greater extent of neurite dispersion, is associated
with a lower level of longitudinally aligned WM fiber, that is, lower AD and
lower AD can contribute to lower FA. Our findings regarding relationships
among FM and left CB AD and 3-to-9-month changes in NE, PE and sootha-
bility were therefore in the opposite direction from those among FM and
left CB ODI and NDI and these emotionality and emotional regulation out-
come measures. Furthermore, these AD—outcome measure relationships
were replicated in our test sample, indicating the robust nature of these
relationships.

We acknowledge several limitations of this study. The sample size
of the present study was relatively small with the exclusion of infants
who were unable to remain still during scans, and the replication was
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Figure 3. Covariate-corrected relationships between WM diffusion tensor measures and the infant emotionality and emotional regulation development (solid
lines as regression lines, brighter shadowed area as prediction interval, and darker shadowed areas as corresponding 95% confidence intervals). (A) Association
between 3-month FM AD and 3-to-9-month NE changes. (B) Association between 3-month left CB AD and 3-to-9-month PE changes. (C) Association between
3-month left CB AD and 3-to-9-month soothablity changes.

limited to diffusion metrics. That noted, we were able to replicate our
findings in an independent test sample, which is a major strength of the
present study. In addition, the test sample in this study was recruited
from a higher-risk group, which may have introduced demographic dif-
ferences between the two samples. However, the high modeling ac-
curacies achieved on the test sample provide further evidence of the
consistency of our findings. Future studies aiming to replicate our NODDI
metric findings in larger multisite infant imaging cohorts, for example,
the HEALthy Brain and Child Development (HBCD) dataset (61), can be
performed when these datasets become publicly available. Potential in-
teraction effects between baseline infant emotionality and emotional
regulation and caregiver affective states may also be examined with these

larger longitudinal datasets. One future direction is to investigate how
microstructural features within tracts can predict emotionality and emo-
tional regulation development. Microstructural features extracted from
tract subregions may be analyzed in longitudinal infant imaging data to
offer insights into tract-specific developmental trajectories, and their re-
lationships with infant emotional behavior.

The present study highlights the important role of FM and left CB
ODI and NDI in 3-month-old infants, reflecting integration of critical
emotion-related large-scale networks at this age, as predictors of the
future development of emotionality and emotional regulation. These in-
sights enhance understanding of the neural mechanisms underlying the
development of emotionality and emotional regulation during this critical
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developmental period, and provide potential early neural targets to mon-
itor the effectiveness of interventions to mitigate future psychopathology
risk.

Materials and Methods
Participants and Measures
The University of Pittsburgh Human Research Protection Office approved
all study procedures. Infant-caregiver dyads for the primary sample were
identified using three recruitment sources: the University of Pittsburgh
Clinical and Translational Science Institute Newborn Research Support
Service (NuRSERy) and Community Pediatric Service (Pediatric PittNet),
and the University of Pittsburgh Pitt + Me website. The test sample
was recruited from the population-based, longitudinal Pittsburgh Girls
Study (MH106570). Exclusion criteria for both samples were: (1) in-
fant: preterm birth (<37 weeks postgestational age), low birth weight
(<5.5 lb), Apgar score <7 (5 min after birth), abnormal brain mor-
phometry (occipitofrontal circumference <32 cm), extended hospitaliza-
tion due to physical health problems, and MRI contraindications (pace-
makers, aneurysm clips, or non-removable ferromagnetic implants); (2)
caregiver: <18 years, prenatal or concurrent illicit substance use (mea-
sured via obstetric records or self-report), and <2 h/day care of the
infant.

At 3 and 9 months, caregiver report on the Infant Behavior
Questionnaire-Revised (IBQ-R) Short Form (1) provided measures of in-
fant NE (i.e., composite of Sadness, Distress to Limitations, Fear, and re-
verse coded Falling Reactivity/Rate of Recovery from Distress subscales),
PE (i.e., composite of Smiling/Laughter and High-Intensity Pleasure sub-
scales), and Soothability. To control for sociodemographic variables that
may impact infant brain and/or emotional behaviors infant biological
sex and age (weeks) at each research visit, caregiver age (years) and
the sum of the types of governmental household public assistance re-
ceived (a proxy for financial strain) at 3 months were used as covari-
ates. Additionally, caregiver postpartum depression using the Edinburgh
Postnatal Depression Scale (EPDS) (62), affective lability using the Per-
sonality Assessment Inventory-Borderline Features Scale (PAI-BOR) (63),
and state and trait anxiety using the Spielberger State-Trait Anxiety In-
ventory (STAI) (64) at the 3- and 9-month visits were used as clinical
covariates.

Image Acquisition and Processing
MRI scanning procedures were conducted with 3-month-old infants dur-
ing natural sleep (65) using a 3T Siemens MAGNETOM Skyra MRI system
(Siemens Healthcare AG, Erlangen, Germany) with a 32-channel head coil
at Children’s Hospital of Pittsburgh. Multishell echo planar (EPI) diffusion
MRI (dMRI) data were acquired under the following parameters: (1) pri-
mary sample: FOV = 200 mm, voxel dimensions = 2.0 × 2.0 × 2.0 mm3,
anterior to posterior phase encoding: TE/TR = 98/2800 ms, 9 reference
volumes with b = 0 s/mm2, 50 volumes with b = 750 s/mm2 and 100 vol-
umes with 2000 s/mm2; posterior to anterior phase encoding for EPI dis-
tortion correction: TE/TR = 80/2500 ms, 10 reference volumes with b =
0 s/mm2. (2) Test sample: FOV = 256 mm, voxel dimensions = 2.0 × 2.0 ×
2.0 mm3, TE/TR = 83/10,600 ms, 7 reference volumes with b = 0 s/mm2,
42 volumes with b = 1000 s/mm2.

Three-month infant multishell diffusion MRI scans first underwent
manual removal of volumes with motion artifacts for quality control, fol-
lowed by correction for eddy current, motion and EPI distortion with FM-
RIB Software Library (FSL) 6.0 toolbox’s eddy and topup (66, 67). For scans
from the primary sample, tissue weight–modulated NODDI metrics were
estimated using the NODDI Matlab toolbox following our previous proto-
col in native space (68). Mean NDI, ODI, FA, AD, and RD were extracted from
the forceps minor (FM) and the left and right cingulum bundle (CB) and
UF tracts generated using AutoTrack in DSI Studio (version June 7, 2020
build) (Supplemental Table S1) (69, 70). Intracranial volume was based
on the brain mask volume. For the test data, tractography of each scan
was generated using the same parameter in DSI Studio. FA, AD, and RD
maps were harmonized with the primary sample using the neuroComBat
(71). Mean harmonized FA, AD, and RD extracted from each WM tract were
used for further analysis.

Data Analysis
NODDI (NDI, ODI) measures of each WM tract from the primary sample
were modeled with 3-to-9-month changes of infant NE and PE in order to
examine relationships among 3-month microstructural features of each
WM tract of interest and change in emotionality during this developmen-
tal period. Infant and caregiver sociodemographic/clinical variables (i.e.,
3- and 9-month infant age in weeks, biological sex, 3-month intracranial
volume, 3-month corresponding NE, PE, or soothability baseline; care-
giver age, financial strain at 3 months, 3- and 9-month caregiver EPDS,
PAI-BOR affective instability, STAI state and trait anxiety) were included
as covariates. Multiple comparisons were addressed using false discovery
rate for each outcome independently (72). Specifically, 20 comparisons
were conducted, corresponding to two NODDI measures for each of five
tracts for two outcomes. Soothability was examined as an additional out-
come separately from NE and PE, as the 3-to-9-month change in sootha-
bility was collinear with the 3-to-9-month change in NE (Supplement
Figure S2).

The same modeling approach was applied using diffusion tensor (FA,
AD, and RD) measures of WM tract microstructure and fiber collinearity
in the primary sample. Correlation analyses were then conducted in the
primary sample to examine relationships between 3-month NODDI and
diffusion tensor measures, in order to assess the potential congruence of
these measures in characterizing WM microstructure.

All significant WM tract index—outcome of interest (change in NE, PE,
or soothability) relationships using diffusion tensor measures of WM mi-
crostructure and fiber collinearity in the primary sample were then eval-
uated in the test sample. Here, the modeling accuracy of each significant
WM tract index—outcome of interest relationship in the independent test
sample was evaluated using the RMSE. Significant relationships among
NODDI indices and 3-to-9-month changes in NE, PE and/or soothability
in the primary sample were not validated in the independent test sample
because the scanning parameters in the latter sample were not optimized
for extraction of NODDI indices.
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