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Deciphering the molecular basis of accelerated biological aging in substance use
disorder: Integrative transcriptomic analysis
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Substance use disorders (SUDs) contribute to early-onset age-related diseases and represent a major global health burden. Accelerated
biological aging (AA) has been proposed as a key factor behind SUD-related morbidity and mortality. This study aimed to elucidate the
molecular basis of AA in SUD by analyzing transcriptomic profiles in postmortem dorsolateral prefrontal cortex tissue from individuals with
SUD, including alcohol (AUD), opioid (OUD), and stimulant use disorders (StUD). We examined brain tissue from 58 donors to assess differential
aging patterns and AA across SUD using epigenetic clocks specifically designed for brain tissues (DNAmMClockcortical, CerebralCortexClockcommon:
and PCBrainAge). Samples were then stratified into those with and without AA to perform differential expression analyses across groups and to

identify biological pathways potentially related to AA. Analyses identified multiple differentially expressed genes linked to AA, revealing
unique and overlapping biological pathways within SUD subtypes. Further, our analysis highlighted shared aging mechanisms across SUD
subtypes, particularly mitochondrial signaling and metabolic processes. While insightful, these subtype-specific findings remain exploratory
due to limited statistical power. Most biological pathways underlying AA in SUD appear to be subtype-specific, with distinct molecular
signatures influenced by substance type. Given the cross-sectional design, causal interpretations are limited. Further research may support

targeted interventions for aging-related risks in SUD populations.
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Introduction

Substance use disorders (SUDs) lead to the early onset of age-related
diseases and pose a critical global health challenge, ranking as the fifth
cause of years lived with disability, the ninth cause of disability-adjusted
life years, and the 15th cause of years of life lost due to premature mortal-
ity (1). SUDs are also associated with increased risks for chronic physical
health conditions such as cardiovascular disease, cancer, chronic pain, and
increased risk for long-term cognitive impairments (2, 3).

Biological aging is a process that describes the progressive deterio-
ration of biological functions, in contrast to chronological aging, which
represents the time since birth (4). Epigenetic clocks, such as Hannum,
Horvath, PhenoAge, and GrimAge, which incorporate DNA methylation
(DNAm) data from unique CpG sites across the genome into weighted lin-
ear equations to predict age and other health outcomes, are currently
considered the most promising biomarkers of biological aging (5). Esti-
mates of epigenetic accelerated aging (AA) are obtained by regressing
the predicted epigenetic age against chronological age within a cohort,
where positive values indicate faster-than-expected biological aging (6).

Emerging research has underscored the biological mechanisms un-
derlying early-onset morbidity and premature mortality in SUD, with AA
proposed as a potential driver of these adverse outcomes (7). This has
been most consistently shown in alcohol use disorder (AUD), where pa-
tients exhibit biological ages that exceed their chronological ages and
appear biologically older than controls in both brain and blood tissues
when measured by the PhenoAge and Horvath clocks (8-12), and bio-
logical aging can be partly reversed with abstinence (10). Additionally,
chronic heroin use has been associated with shorter DNAm-based telom-
ere length (13). However, findings across SUDs such as stimulant use
disorder (StUD) and opioid use disorder (OUD) are inconsistent. Assess-
ments using first-generation epigenetic clocks such as Horvath and Han-
num have shown no clear significant differences between these SUDs and

control groups, and even counterintuitive negative biological aging has
been reported (9, 12).

The absence of consistently higher AA in some SUDs does not negate
its relevance; rather, the findings from current studies imply that adverse
aging outcomes in SUD may be driven by distinct biological processes and
that the degree of AA may vary based on substance-specific effects and
the type of epigenetic clock used for assessment. In regards to the latter,
although previous studies, including our own, have shown that epigenetic
clocks designed for use in peripheral blood may serve as good estimators
of brain aging (8), the extent of AA in SUD in the brain has not previously
been comprehensively explored using epigenetic clocks specifically de-
signed for brain tissues. In this study, we aimed to identify substance-
specific transcriptomic profiles of AA in the dorsolateral prefrontal cor-
tex (DLPFC, Brodmann area [BA] 9), a key region involved in cognitive
processes relevant to SUD, such as executive functions, decision-making,
behavioral and cognitive inhibition, working memory, and craving (14).
Specifically, we hypothesized that distinct drug-specific biological path-
ways would influence AA in SUD, potentially explaining the variability in
aging outcomes observed in these disorders.

In this study, we explored the relationship between SUD and epige-
netic markers of AA, focusing on AUD, OUD, and StUD. By concentrating on
specific SUDs, we aimed to clarify substance-specific aging patterns and
minimize confounding effects that could arise from broader case-control
comparisons. Our objectives were: (i) to identify differentially expressed
genes (DEGs) associated with AAinindividuals with SUD and (ii) to explore
overlaps in enriched biological pathways and mechanisms across differ-
ent SUD subtypes (AUD, OUD, and StUD) related to AA.

Results
Participant demographic, clinical, and biological characteristics are sum-
marized in Table 1 and Supplementary Table S2. The identified AA— and
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Table 1. Sample characteristics and group comparisons
Overall AA-— AA+ Statistics p-value Effectsize
Sample size, freq. 58 30 28
Age, mean (SD) 45.84(14.49) 44.33(16.54) 47.46(12.01) t[52.89] =-0.83 0.411 0.113
Sex, freq. (%) 15(25.9) 6(20.0) 9(32.1) #A2[1] =0.57 0.45 0.139
Smoking index, mean (SD) 0.82(0.05) 0.83(0.06) 0.81(0.05) t[56] =1 0.32 0.133
Race: White, freq. (%) 35(60.3) 16(53.3) 19(67.9) #A2[1]1=0.74 0.389 0.148
Race: Black, freq. (%) 17(29.3) 9(30.0) 8(28.6) i*A2[1]=0 0.999 0.016
Race: Hispanic, freq. (%) 6(10.3) 5(16.7) 1(3.6) #A2[1] = 1.45 0.228 0.215
AUD, freq. (%) 13(22.4) 6(20.0) 7(25.0) #A2[1] = 0.02 0.888 0.06
0UD, freq. (%) 16(27.6) 10(33.3) 6(21.4) #A2[1] = 0.52 0.472 0.133
StUD, freq. (%) 10(17.2) 4(13.3) 6(21.4) #A2[1] = 0.22 0.64 0.107
AUD and OUD, freq. (%) 6(10.3) 4(13.3) 2(7.1) #A2[1]1=0.12 0.732 0.102
AUD and StUD, freq. (%) 5(8.6) 3(10.0) 2(7.1) i#A2[1]1=0 0.999 0.051
OUD and StUD, freq. (%) 3(5.2) 1(3.3) 2(7.1) i#A2[1]1=0 0.951 0.086
Polysubstance use disorder, freq. (%) 5(8.6) 2(6.7) 3(10.7) #A2[1] = 0.01 0.936 0.072
Cause of death: Cardiovascular/Chronic 22(37.9) 11(36.7) 11(39.3) i#A2[1]1=0 0.999 0.027
conditions, freq. (%)
Cause of death: Overdose, freq. (%) 34(58.6) 19(63.3) 15(53.6) i*A2[1] =0.24 0.626 0.099
Cause of death: Other, freq. (%) 2(3.4) - 2(7.1) i*A2[1] = 0.59 0.441 0.196
PCBrainAgeClockAcc, mean (SD) 0.05(3.95) —1.87(3.79) 2.11(3.00) t[54.59] = —4.44 0.999 0.515
DNACorticalClockAcc, mean (SD) —0.30(3.44) —2.42(2.65) 1.97(2.64) t[55.74] = —6.32 0.999 0.646
CerebralCortexClockCommonAcc, mean (SD) —0.49(3.34) —2.65(2.18) 1.84(2.76) t[51.38] = —-6.83 0.999 0.69
PCHorvath1Acc, mean (SD) 0.00(3.79) —0.92(4.03) 0.98(3.30) t[55.12] = —-1.97 0.054 0.256
PCHorvath2Acc, mean (SD) 0.00(2.47) —0.62(2.60) 0.66(2.18) t[55.37] = —2.03 0.047 0.263
PCHannumAcc, mean (SD) 0.00(1.47) —0.17(1.53) 0.19(1.41) t[56] = —0.94 0.353 0.124
PCPhenoAgeAcc, mean (SD) 0.00(1.73) —0.18(1.83) 0.20(1.63) t[55.89] = —-0.84 0.405 0.112
PCGrimAgeAcc, mean (SD) 0.00(1.12) 0.12(1.04) —0.13(1.21) t[53.57] = 0.84 0.403 0.114
Batch, freq. (%) 20(34.5) 9(30.0) 11(39.3) i*A2[1] = 0.22 0.64 0.098
PMihrs, freq. (%) 26.23(7.64) 27.66(8.20) 24.69(6.80) t[55.25] =1.51 0.138 0.199
RIN Novogene, freq. (%) 7.18(0.96) 7.03(0.99) 7.35(0.91) t[55.98] = —-1.28 0.206 0.169
pH, freq. (%) 6.54(0.28) 6.55(0.29) 6.53(0.28) t[55.94] =0.21 0.831 0.029
dtangle: Astrocytes, freq. (%) 0.32(0.15) 0.34(0.15) 0.30(0.16) t[55.04] =1.02 0.314 0.136
dtangle: Endothelia, freq. (%) 0.09(0.02) 0.08(0.02) 0.09(0.02) t[53.01] = -0.9 0.372 0.123
dtangle: Microglia, freq. (%) 0.05(0.02) 0.05(0.01) 0.05(0.02) t[46.69] = —0.42 0.676 0.062
dtangle: Neurons, freq. (%) 0.40(0.13) 0.39(0.12) 0.42(0.13) t[54.76] = —0.96 0.341 0.129
dtangle: Oligodendrocytes, freq. (%) 0.07(0.03) 0.06(0.03) 0.07(0.04) t[48.75] = —1.06 0.292 0.151
dtangle: OPCs, freq. (%) 0.07(0.02) 0.07(0.01) 0.07(0.02) t[51.77] =1.27 0.211 0.173
The Student t test was used to compare the ages of the different groups, with the effect size reported as an r statistic. For r, values of 0.1, 0.3, and 0.5
denote small, moderate, and large effects, respectively. The chi-square test was employed for categorical variables, with effect sizes reported using
Cramér's V. For Cramér’s V, values of 0.1, 0.3, and 0.5 indicate small, moderate, and large effects, respectively.

AA+ groups were comparable across variables such as chronological age,
sex distribution, and racial composition. Supplementary Figure S2 shows
the overlap of AA between SUD types.

Differential Expression and Pathway Enrichment Analyses

DEG analyses between the AA+ and AA— groups were carried out within
all SUD (AA+, n = 28; AA—, n = 30) and then individually within each
SUD subtype: AUD (AA+, n = 7; AA—, n = 6), OUD (AA+, n = 6; AA—,
n = 10), and StUD (AA+, n = 6; AA—, n = 4). We identified 11 DEGs in
the combined SUD analysis (Supplementary Table S3). At the same time,
exploratory analyses in the SUD subgroups revealed 463 DEGs in primary
AUD (Figure 1A; Supplementary Table S4), 58 in primary OUD (Figure 1B;
Supplementary Table S5), and 51 in StUD (Figure 1C; Supplementary Ta-
ble S6). Notably, only a few DEGs were shared across all SUD subgroups
(Figure 1D). Gene Ontology (GO) biological process (BP) pathway analyses
revealed significant enrichment in 85 pathways in AUD (Supplementary
Table S7), 9 in OUD (Supplementary Table S8), and 17 in StUD (Supple-
mentary Table 59). The top 10 pathways from the GO BP enrichment anal-
yses conducted for all SUD subgroups in DEG are shown in Table 2. Though
insightful, these subtype-specific findings remain exploratory due to lim-
ited statistical power.
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SUD Subgroups Overlaps

DEG Overlaps Between AUD and OUD. Among SUD subgroups, a larger
overlap in the DEGs between AA+ when compared with AA— was found
for the AUD and the OUD groups (Table 3). Remarkably, most of the genes
were downregulated in AA+ when compared with AA— within OUD but up-
regulated within AUD (TRIOBP, TNS2, NIBAN2, and SOX17), while the oth-
ers had the exact opposite pattern, being upregulated in AA+ when com-
pared with AA— within the OUD but downregulated within AUD (RAB3C,
PGM2L1, and ROB02).

DEG Overlaps Between AUD and StUD. Five DEGs were found to over-
lap among the AUD and StUD groups: EDN1, HBA2, HBA1, AQP1, and HBB
(Table 3). Within the AUD group, all these genes were upregulated in
AA+ when compared with AA—. However, within the StUD group, only
AQP1 was upregulated, while EDN1, HBA2, HBA1, and HBB were downreg-
ulated. These contrasting patterns suggest different biological responses
in these groups concerning aging in AUD and StUD.

DEG Overlaps Between OUD and StUD. Two DEGs were identified as over-
lapping among the OUD and StUD groups (Table 3): TTYH2 and TMEM63A.

https://doi.org/10.61373/gp025a.0029
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Figure 1. Differential expression in DLPFC of SUD subjects with accelerated biological aging compared to those without. Volcano plots show differences between
accelerated aging positive (AA+) and accelerated aging negative (AA—) in (A) AUD(AA+, n=7; AA—, n=6); (B) OUD (AA+,n=6; AA—, n=10); and (C) StUD (AA+,
n=6; AA—, n=4). The Venn Diagram (D) shows the overlaps between the differentially expressed genes identified. As we can see, five genes were differentially
expressed when comparing AA+ and AA— in both AUD and StUD; seven genes were differentially expressed when comparing AA+ and AA— in both AUD and OUD;

and two genes were differentially expressed when comparing AA+ and AA— in both OUD and StUD.

Both genes were downregulated in AA+ when compared with AA—in OUD,
while in the StUD group, they were upregulated in AA+.

Molecular Mechanisms Linking Differential Gene Expression Across SUDs
Figure 2 illustrates a hypothetical molecular framework integrating DEGs
from enriched pathways identified in AUD, StUD, and OUD (Table 2),
highlighting key biological pathways involved in neuroinflammation, mi-
tochondrial dysfunction, and oxidative stress as potential mechanisms
underlying AA in SUD. The diagram highlights interactions among tran-
scription factors, inflammatory mediators, and mitochondrial regula-
tors, suggesting distinct but converging pathways contributing to cel-
lular stress, mitochondria function, and neuroinflammation across SUD
subtypes.

Discussion

To our knowledge, this is the first study investigating brain AA in
SUDs using epigenetic clocks specifically designed for brain tissues
(DNAmMClockcortical, CerebralCortexClockcommon, and PCBrainAge). No-
tably, we found that despite the high correlation between the clocks,
the contribution of the variables observed in our principal component
analyses (PCA), along with the innovative dichotomous classification of
our sample, emphasized that the three brain-specific epigenetic clocks
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have distinct characteristics and do not necessarily converge when clas-
sifying individuals based on their AA. Hence, our findings align with the
idea that each clock might capture unique aspects of aging. As we noted
in the Method section, while this PC1-based dichotomization facilitates
downstream comparisons, it represents a simplification of what is likely a
continuous biological process. This classification should, therefore, be
interpreted as a pragmatic, exploratory strategy to investigate broad
molecular differences associated with higher versus lower levels of epi-
genetic aging in the brain.

Overall, the differential gene expression and pathway analysis find-
ings suggest that AA in SUD is not a uniform process but that distinct bi-
ological mechanisms contribute to aging, depending on the type of sub-
stanceinvolved. The most robust differences between AA+ and AA— were
observed in the AUD group, which aligns with previous research show-
ing an effect of AUD on AA (9, 12). Enrichment analyses suggest that AA
is related to protein phosphorylation, signal transduction, and the pos-
itive regulation of protein localization to the plasma membrane. Protein
phosphorylation and signal transduction are essential processes often al-
tered in both normal aging and disease progression (15, 16). Furthermore,
the finding of enrichment of glutamatergic synapse pathways aligns
with studies suggesting a critical role of glutamate in both aging and

https://doi.org/10.61373/gp025a.0029
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Table 2. Top 10 GO BP pathways identified when comparing AA+ and AA— in SUD groups

Term

Genes Fold enrichment

Alcohol use disorder

Positive regulation of integrin-mediated signaling pathway
Cellular response to zinc ion

Intracellular zinc ion homeostasis

Negative regulation of endocytosis

Positive regulation of G protein-coupled receptor signaling pathway
Removal of superoxide radicals

Regulation of store-operated calcium entry

Positive regulation of leukocyte migration

Negative regulation of viral genome replication
Platelet-derived growth factor receptor signaling pathway

Opioid use disorder

Central nervous system development

Outer ear morphogenesis

Metanephros development

Positive regulation of execution phase of apoptosis
Positive regulation of gene expression

Left/right axis specification

Positive regulation of DNA-templated transcription
Outflow tract morphogenesis

Heart looping

Stimulant use disorder

Central nervous system development
Oxygen transport

Positive regulation of fibroblast migration
Semaphorin-plexin signaling pathway involved in axon guidance
Cell adhesion

Transport

Response to hydrogen peroxide

Response to muscle stretch

Hydrogen peroxide catabolic process
Nitric oxide transport

LAMB2, EMP2, LIMS2 9.699*
MT2A, MT1M, MT1X, MT3, MT1E 9.429**
MT2A, SLC30A9, MT1M, MT1X, MT3, SLC39A14, MT1E 9.052%*
LGALS3, RUBCN, SYT11 9.052*
GPER1, TMOD2, SLC39A14 9.052*
NOS3, MT3, SOD3 8.487*
CRACR2B, HOMER1, SLC8B1 8.487*
MADCAM1, ZP3, VEGFA 8.487*
IFITM3, SRPK2, IFITM2, RSAD2, MX1, EIF2AK2, IFIT1 6.888***
NR4A3, TXNIP, PTPRJ, CSPG4, PLAT 6.858**
ROBO2, CITED2, ZIC3, ID3 9.997**
EYAL, ZIC3 78.31%*
ROBO2, SOX17, EYAL, ID3 46.986™**
TP53BP2, HTR2A 46.986™**
IL32, SOX17, CSF1, CITED2, HDAC1, ID3 4.154*
CITED2, ZIC3 3.915*
NIBAN2, SOX17, CITED2, HDAC1, ZIC3, TRIM21, NPAS3 3.46*
SOX17, EYAL, CITED2 19.947*
SOX17, CITED2, ZIC3 14.89*
UGTB, RELN, MOG 8.933*
HBB, HBA2, HBA1 78.726"**
THBS1, AQP1 64.596**
EDN1, PLXNB3 55.983*
CLDN11, MAG, RELN, MOG, PCDHGB2, CCN1, THBS1 5.685*
ALB, AFP 46.652*
HBB, HBA2, HPR, HBA1 45.392**
EDN1, NPPA 44.197*
HBB, HBA2, HBA1 43.435**
EDN1, HBB, HBA2, HBA1, AQP1 419.872***

*<.05,*< .01, **<.001.

neurodegenerative processes and highlights the role of glutamatergic
signaling in maintaining synaptic plasticity and cognitive function (17).
Regarding OUD, we identified transcriptional regulation, neurodevelop-
ment, and immune-inflammatory processes as key drivers of AA. We also

Table 3. Overview of comparisons between accelerated aging groups
(AA+ vs. AA—) and overlaps between groups

DEG (p <.01,FC <>.5) GO:BP (p <.05)

SuD 11 6
AUD 463 85
oub 58 9
StubD 51 17
AUD N OUD 7 2
AUD N StUD 5 6
OoubD N StuD 2 1
AUD N OUD N StUD 0 0

This table provides an overview of all comparisons between individuals
with accelerated biological aging (AA+) and those without (AA—),
including overlaps between SUD groups. Differential gene expression
(DEG) analysis was performed for each group. The top rows summarize
the number of DEGs and enriched pathways identified in the AA+ versus
AA— analyses for each SUD group. The bottom rows present overlaps
between SUD subgroups (AUD and OUD; AUD and StUD; OUD and StUD;
AUD and OUD and StUD), including DEGs and enriched pathways shared
across comparisons.
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found that positive regulation of DNA-templated transcription, which in-
cludes the genes NIBAN2, SOX17, and HDAC1, contributes to transcrip-
tional age-related alterations in OUD. This finding aligns with previous
studies on transcriptional dysregulation in aging and highlights the role
of histone methylation in this process (18). Concerning StUD, our findings
emphasize the role of oxidative stress, hypoxia responses, and cell adhe-
sion pathways. As supported by (18), oxidative stress has an important
impact on aging, particularly in the development of chronic diseases like
cardiovascular disorders (18).

Our integrative mechanistic analysis identified neuroinflammation,
oxidative stress, and mitochondrial dysfunction to be implicated in AA
across all SUD subtypes. Mitochondria function is central to maintain-
ing cellular energy homeostasis and regulating oxidative stress responses
(15). DEGs such as NOS3, TXNIB HTR2A, CSF1, HDAC1, EDN1, THBS1,
and RELN are directly implicated in mitochondrial dysfunction and ROS
production and can activate the assembly of NLRP3 through different
mechanisms (19-22). The cerebral expression of NOS3 has been asso-
ciated with molecular abnormalities related to neurodegeneration, in-
cluding oxidative stress and mitochondrial dysfunction (19). TXNIP over-
expression significantly increases mitochondrial complex Il activity and
promotes the expression of SDHA, a subunit of complex Il, which is
a significant site for reactive oxygen species (ROS) generation (20).
ROS production by CSF-1 is crucial for macrophage functions such as
pathogen killing, cell signaling, and inflammatory responses (21). THBS1
activates latent transforming growth factor-beta 1 (TGF-1), a cru-
cial cytokine involved in inflammation, wound healing, and immune re-
sponses, and THBS1 stimulates the production of ROS through its in-
teraction with CD47 (23, 24). HDAC1 can both promote and suppress
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Figure 2. Inflammation and mitochondrial function as mechanisms in AA across SUDs. This figure presents a proposed model linking genes associated with
neuroinflammatory and oxidative stress-related pathways across three major SUDs when comparing accelerated aging positive (AA+) and accelerated aging
negative (AA—). Genes that are shown in yellow were observed in aging-related pathways within AUD, while the ones in green were observed in aging-related
pathways within StUD, and the ones in blue within OUD. The nuclear factor-kappa B (NF-«B) pathway is activated by genes such as NR4A3, TRIM21, IFITM2,
IFITM3, and IL-32, which are involved in inflammatory signaling and immune regulation and might contribute to the production of proinflammatory cytokines
(e.g., IFN-«, IFN-y, TNF-q, IL-6) that may exacerbate neuronal damage. Furthermore, the TXNIP and HDAC1 contribute to inflammasome activation, leading to
increased Caspase-1 activity and the subsequent maturation of IL-18 and IL-18, promoting neuroinflammatory responses. Future studies might investigate the
role of NLRP3 as a central component in stimulant-induced neuroinflammation in this mechanism. Finally, the upregulation of NOS3, TXNIP, CSF1, HTR2A, HDAC1,
EDN1, THBS1, and RELN is linked to vascular dysfunction, cellular stress, and neurodegeneration, might contribute to mitochondrial dysfunction and oxidative

stress (ROS).

inflammatory signaling depending on environmental stimuli, which may
also influence ROS production (25). SOX17, in particular, has been im-
plicated in mitochondrial homeostasis and metabolic regulation, as it
influences ATP production, oxidative stress balance, and mitochondrial
biogenesis, which are essential for cellular energy metabolism and dif-
ferentiation (26, 27). Its role in regulating transcription factors such as
HNF1B and FOXA2 also highlights its broader impact on mitochondrial
function and metabolic adaptation (26).

It is worth mentioning that opposite patterns of regulation were ob-
served in overlapping DEGs for SUD subtypes. For instance, the differen-
tial expression of SOX17 in AUD and OUD may reflect distinct substance-
specific effects on cellular stress responses and mitochondrial function in
AA+ individuals. In AUD, SOX17 appears to be upregulated, potentially
indicating a compensatory mitochondrial response to alcohol-induced
oxidative stress, excitotoxicity, and inflammation (28, 29). In contrast,
50X17is downregulatedin OUD, which may reflect a blunted or exhausted
mitochondrial stress response. As mentioned before, opioids have been
shown to impair mitochondrial respiration, increase ROS production, and
dysregulate energy metabolism—factors that could lead to suppressed
transcriptional regulators like SOX17. Another example is NIBAN2, which
is upregulated when cells are under stress. We found that NIBAN2 is up-
regulated in AUD and downregulated in OUD. In AUD, alcohol-induced ox-
idative stress may drive the upregulation of NIBAN2 as a compensatory
response to mitigate damage. In contrast, OUD's impact on mitochondrial
dysfunction and ROS production may suppress transcriptional responses,
leading to the downregulation of NIBAN2.
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Several limitations of the present study should be acknowledged. The
relatively small sample size limits the generalizability of the findings,
particularly when subdividing the SUD group into specific subtypes. It
is important to emphasize that the SUD subgroups were strictly based
on the primary diagnosis determined by the consensus diagnosis pro-
cess. We excluded participants meeting criteria for any additional SUD
diagnoses, as determined from the psychological autopsy. Future stud-
ies with larger sample sizes are required to confirm our findings and
to further elucidate the mechanisms of AA in different SUDs. The cross-
sectional design of this study inherently limits our ability to conclude
causality or the temporal progression of AA in individuals with SUD. While
we identified associations between molecular profiles and AA status,
we cannot determine whether these epigenetic and transcriptomic sig-
natures reflect causal mechanisms, compensatory adaptations, or con-
sequences of long-term substance use. Longitudinal studies that track
individuals over time—ideally from active substance use through absti-
nence or relapse—are essential to disentangle the directionality of these
associations and to better understand how biological aging evolves in
the context of substance use and related risk factors. Additionally, while
our models accounted for several biological and technical covariates, in-
cluding RNA integrity, tissue pH, smoking index, batch, and estimated
cell-type proportions, we acknowledge the likelihood of residual con-
founding. This limitation is inherent to postmortem studies, where
comprehensive individual-level data are often difficult to obtain. Al-
though we conducted detailed psychological autopsy interviews with the
donors’ next-of-kin and used a rigorous diagnostic consensus process to
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determine primary SUD diagnoses, information regarding psychiatric co-
morbidities, psychotropic medication use, or other medical conditions
may be incomplete or inaccurate. These unmeasured factors could influ-
ence gene expression and epigenetic profiles and may partially confound
our findings. Future studies leveraging larger cohorts and incorporating
more detailed clinical records are needed to disentangle these complex
relationships. Finally, significant DEGs were identified based on a nomi-
nal p-value threshold of 0.01 and a fold-change cutoff of 0.5. Notably, no
genes survived FDR correction, and thus, all results should be interpreted
as exploratory.

In conclusion, this study provides valuable insights into the molecu-
lar mechanisms underlying AA in SUD. By identifying genes and enrich-
ing biological pathways across various SUDs, we underscore the complex-
ity of substance-induced accelerated epigenetic aging in the brain. Some
shared mechanisms of AA between SUD subtypes were noted. Particularly,
genes involved in metabolic regulation and mitochondrial function were
identified across all disorders. Vascular and oxygen transport system al-
terations were common in AUD and StUD; cellular signaling, neurodevel-
opment, and metabolic processes in AUD and OUD; and immune system
dysregulation and inflammatory processes in OUD and StUD. Future re-
search should focus on further elucidating these unique aging processes,
which may stem from substance-specific molecular signatures or from a
combination of factors, such as environmental stressors, comorbidities,
and lifestyle influences, that interact with substances use to accelerate
biological aging. Understanding these interactions will be critical in de-
veloping targeted interventions to mitigate the health risks associated
with premature aging in SUD populations.

Materials and Methods

Sample Characteristics and Brain Tissue Samples

Postmortem brain BA9 samples of 62 participants with SUD were ob-
tained from The University of Texas Health Science Center at Houston
(UTHealth) Brain Collection, in collaboration with the Harris County Insti-
tute of Forensic Science (HCIFS), under the approval of the Institutional
Review Board, as described previously (8). For all subjects, informed con-
sent was secured from the next-of-kin and demographic information, au-
topsy and toxicology reports, and medical and psychiatric notes were ob-
tained if available (8). A structured psychological autopsy interview (30)
was conducted with the donor's next-of-kin to obtain detailed informa-
tion of mental health history, age of onset of drug use, types of substances
used, drinking and smoking history, and any co-morbidities. An indepen-
dent panel of three trained and licensed clinicians reviewed all available
information to reach a consensus diagnosis for each subject, classifying
them as having a SUD, from which subjects were then categorized into a
specific SUD subgroup based on their primary diagnosis.

Four participants (n = 4) were excluded following FastQC quality con-
trol, and four additional participants (n = 4) were removed after being
identified as consistent outliers based on Euclidean and Mahalanobis dis-
tances in PCA conducted on both cell type proportions and RNA counts.
Hence, epigenetic age estimates and clustering analysis (section 2.2,
below) were performed for 58 participants with SUD. The Shapiro-Wilk
and Kolmogorov-Smirnov tests were used to assess the distribution of
variables. Differences in categorical variables were examined using Chi-
square tests, while continuous variables were evaluated with Student
t tests for parametric distributions. Effect sizes were calculated using
Cramér's V for Chi-square tests and the r statistic for Student t tests.

Epigenetic Clock Estimates and Clustering Analysis

Total DNA extraction and DNAm assays were performed, as described pre-
viously (8). Subsequently, DNAm data were processed using the minfi and
HluminaHumanMethylationEPICanno.ilm10b4.hg19 packages (31). IDAT
files were imported, and quality control steps included filtering sam-
ples with detection p values above 0.05 and removing probes with low
bead counts. Functional normalization, combined with Noob normaliza-
tion, was applied to correct for technical noise. Probes failing a detection
p-value threshold of 0.01, those associated with SNPs, and those located
on sex chromosomes were excluded. Beta values were obtained using the
getBeta function, and M-values were obtained using the getM function
from minfi.
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Epigenetic aging was assessed using three clocks specifically de-
signed for brain tissues: DNAmMClockcortical, CerebralCortexClockeommon,
and PCBrainAge. DNAmClockcorticat Was developed to improve the ac-
curacy of age prediction, specifically in human cortex tissue, trained
on chronological age using 347 CpG sites relevant to the cerebral cor-
tex (32). The CerebralCortexClockcommon clock was designed to estimate
DNAm age specifically for the cerebral cortex, trained using 201 age-
associated CpG sites common across different non-cerebellar brain tis-
sues (33). Finally, PCBrainAge was trained using a method of principal
component projection on datasets that emphasize brain-specific DNAm
patterns associated with Alzheimer's disease (34). DNAmMClockcortical @and
CerebralCortexClockcommon Were computed using the dnaMethyAge pack-
age, while the PCBrainAge was computed using the calcPCBrainAge
package.

In addition to the brain-specific clocks, we used the PC-Clock package
to calculate PCHorvathl, PCHorvath2, PCHannum, PCPhenoAge, and PC-
GrimAge (35, 36). PCHorvathl and PCHorvath2 are based on Horvath's
original and revised multitissue clocks, respectively, while PCHannum is
derived from the Hannum clock, initially trained on blood samples. PCPhe-
noAge and PCGrimAge are constructed from the PhenoAge and GrimAge
clocks, often referred to as “second-generation” clocks, which predict
phenotypic aging and mortality risk, respectively.

AA estimates were derived by calculating DNAm-predicted age and
regressing this against chronological age, where positive residuals indi-
cate faster-than-expected aging (i.e., AA), and negative residuals indi-
cate slower-than-expected aging (12). To classify subjects into distinct
clusters of aging trajectories based on the AA profiles from the three
brain-specific clocks, PCA was applied to the standardized AA data to re-
duce dimensionality and capture the common aging signal across clocks.
As PC1 explained 58% of the variance, participants were grouped based
on PC1 scores, with positive scores indicating accelerated aging (AA+)
and negative scoresindicating non-accelerated aging (AA—) (Supplemen-
tary Figure S1). Although epigenetic aging is inherently a continuous pro-
cess, this binary classification was adopted as a pragmatic strategy to
enhance interpretability and statistical power in downstream transcrip-
tomic analyses, particularly given the modest sample size. PCA-based
grouping allowed us to aggregate the shared signal across partially non-
converging clocks, minimizing the noise associated with individual clock
variability.

Figure 3 shows the overlap of subjects identified as AA+ or AA— based
on each clock, suggesting that although each clock captures distinct as-
pects of the aging process, there is considerable convergence in identi-
fying individuals with AA in SUD. Correlations within all epigenetic vari-
ables, brain epigenetic variables, and chronological age were tested for
the entire sample using Pearson tests with the Hmisc R package.

Next-generation RNA Sequencing and Differential Expression Analysis
RNA sequencing (RNA-seq) was carried out in BA9 bulk tissue from the
same subjects as for DNAm, and data were trimmed for low-quality
base pairs and adapter sequences using trim_galore, as described pre-
viously (36). Sequencing reads were mapped to the human genome
build UCSC hg38 using STAR (37), and gene expression was quanti-
fied using featureCounts (38). Data was filtered and harmonized with
reference gene signatures using curated gene expression profiles from
the sigsBrain.rda file (https://rdrr.io/github/unawaz1996/brainyR/man/
sigsBrain.html), based on publicly available brain single-cell RNA-seq
data (39). The run.DTA function from the dtangle package (40) was used
to estimate the relative proportions of each cell type, and composite neu-
ronal proportions were calculated by combining excitatory and inhibitory
neuron estimates.

Differential expression (DE) analysis was conducted using the R Bio-
conductor packages edgeR (41) and limma (42). Sample read counts were
filtered to retain only expressed genes, and normalization was performed
using the Trimmed Mean of M-values (TMM) method (calcNormFactors
function in the edgeR package). The model matrix was fitted using (m-
Fit, and empirical Bayes statistics (eBayes) were applied to identify DEGs.
DE between AA+ and AA— was assessed for all the SUD samples (n =
58) and within each SUD subgroup based on their diagnosis (AUD = 13,
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Figure 3. Pearson correlations and Venn diagram of overlaps between aging acceleration based on epigenetic clocks designed for brain tissue. (A-C) Scatter plots
showing Pearson correlations between epigenetic aging acceleration measures derived from different brain-specific clocks. Each dot represents a participant,
categorized based on their PC cluster classification: accelerated aging positive (AA+, filled dots) or accelerated aging negative (AA—, open circles). (D) Venn
Diagram showing overlap of SUD subtypes: AUD (yellow), OUD (blue), and StUD (green). Correlation coefficients (r) are annotated for each pair of measures, with
significance levels indicated (*p < .05; ***p < .001). The shaded regions around the regression lines indicate 95% confidence intervals.

OUD = 16, StUD = 10). To minimize confounding effects, SUD subgroups
were restricted to participants with a single primary SUD diagnosis,
excluding those meeting the criteria for any additional SUD. The models
were: ~ Accelerated Aging [AA+ vs. AA—] + Age [years] + Sex [male vs.
female] + Batch [A vs. B] + postmortem interval [PMI in hours] + RNA in-
tegrity number [RIN] + tissue pH + smoking index [CpG methylation levels
at cg05575921 (43, 44)] + Astrocytes [proportion]. The proportion of as-
trocytes wasincluded as a covariate because it accounted for a substantial
portion of the variance (16%) in the variance partition analysis (Supple-
mentary Table S1). Significant DEGs were identified based on a nominal
p-value threshold of 0.01 and a fold change cutoff of 0.5. Results were
visualized using EnhancedVolcano, highlighting significant DEGs across
conditions. Finally, sensitivity analyses were performed, including individ-
uals with an additional SUD (or secondary diagnosis).

Pathway Analyses

The DEGs were extracted and subjected to enrichment for GO: BP terms.
Enrichment analysis was then conducted using the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.
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gov) (45), enabling comparison of overlaps between enriched pathways.
Significant pathways were identified with a nominal p value < 0.05.
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