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Neural mechanisms of cognitive generalization across species: From hippocampus
to cortex
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How do brains take what they have learned and apply it to new situations? This fundamental question sits at the core of cognitive
generalization—a crucial ability that allows organisms to adapt to novel circumstances by drawing on prior experiences. While this mental
flexibility enhances survival across species, the underlying neural mechanisms connecting different brain regions in rodents, primates, and
humans remain poorly understood. Our review maps these neural pathways of generalization from hippocampus to cortex across the
evolutionary spectrum. We show how hippocampal remapping and replay processes create abstract rules during generalization, with different
hippocampal subregions handling distinct memory types. The prefrontal cortex emerges as essential for rule-based categorization across all
species studied, while the orbitofrontal cortex drives value-based decision-making, and the posterior parietal cortex guides generalization
through perceptual processing of past experiences. We explore the neural circuitry connecting these regions and examine how similar these
brain structures and their associated behaviors are across species. Additionally, we discuss how disruptions to cognitive generalization
manifest in various neurological conditions and their corresponding brain regions. This comprehensive analysis not only clarifies the neural
foundations of cognitive generalization but also suggests promising directions for interventions targeting related neurological disorders.
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Introduction
Experience is the best teacher of life. The ability of fast adapting from
past experiences to novel circumstances is required for survival and bet-
ter living in animals and humans. Generalization is the presentation of
adaptive performance which requires the abstraction of common rules or
concept or pattern features from learned tasks of specific behaviors and
then that be transferred and applied to similar but novel circumstances.
The process of generalization can be basically divided into three steps:
firstly, individual experience of an event, situation or a task is obtained;
secondly, the event, situation or task should be abstracted as a concept
or a rule; thirdly, the abstracted concept or rule is employed into subse-
quent similar events or tasks. Taking a simple example, once a man has
learned a skill from a specific sport game badminton, he could quickly
get the skills of how to play a similar sport game tennis. During this pro-
cess, the memory information of playing badminton has been abstracted
as a common feature or rule that can be generalized to the learning pro-
cess of playing tennis. Generalization enables the identification of com-
monalities and relationships among diverse events, objects, and actions
via semantic learning, concept learning, category abstraction, structure
learning, and etc., thus being applicable in diverse high intelligent be-
haviors, such as, perception, learning and decision-making, and future
planning (1).

Identification of common features or rules is the most prominent
step for generalization. This is based on the comparison and interactions
among memories from different tasks, which is also supported by the ge-
ometry of abstraction (2). Abstract rule is different from concrete rules;
concrete rule is based on simple spatiotemporal links between objects,
events, and actions, while abstract rules are complicated, applied to mul-
tiple circumstances, and generalized from past to novel circumstances
(1, 2). For a particular abstract rule, the core of the rule is rigid and does
not change with environmental factors.
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Transfer is another key step of generalization that the abstracted rules
or structural knowledge between elements are transferred rather than
knowledge of the individual elements themselves. This is thought to be
critically dependent on the instability of memory, which is helpful for
transferring (3). Transfer of structural knowledge in spatial and nonspa-
tial tasks both can improve efficiency. Memories, or the neurons that carry
them, show variability in response to changes in the environment under
the guidance of abstract rules. This shows the mutual unity of the trans-
ferred structure and the abstract structure in representing generalized
behavior. One situation can be abstracted into a structure, which maps
to a new and similar situation with different sensory input. The solution
is inferred with a shorten process. This phenomenon can be explained by
psychology as “the formation of learning sets” (4).

According to these two important properties of generalization, there
are two types of neural populations with opposite characteristics that co-
operate to support generalization. A single neuron showing stable firing
pattern or neural ensembles converging onto a low-dimensional feature
for representing the common structure that supports generalized cogni-
tive operation. On the other hand, there also exists neurons with flexible
property, which would change their activity pattern to cope with variable
external factors. This change is directional, not random, which is followed
by the main process for characterizing common features of tasks.

Regarding the limited study of generalization but its importance for
adaption and survival, in this review, we focus on reviewing the neural
mechanism of generalization of spatial and nonspatial representations in
different cortical and subcortical brain regions, including hippocampus,
prefrontal cortex (PFC), orbitofrontal cortex (OFC), and posterior parietal
cortex (PPC) from rodents to primates and humans, which will explicit a
brief frame for the neural manipulation of generalization from hippocam-
pus to cortex and provide cues for revealing the circuitry connections
among these brain regions in modulation of the cognitive generalization.
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Figure 1. Hippocampal remapping and replay in cognitive generalization. (A) Left: Hippocampal neurons show remapping activities to represent the altered
spatial stimulus; Right: In this article (70), the event-specific rate remapping neurons support transfer learning on two geometrically distinct mazes, from
square maze to circular maze. (B) In this article (60), hippocampal CA2 neurons show remapping activity to same mice with changed locations. While it needs to
be further explored whether CA2 cells also remap to another mouse with same state compared with the previous one. C, Hippocampal neural replay guides mice
to accomplish the similar tasks with different contexts. The replay activity occurs during sleep and awake state.

Hippocampal Replay and Remapping Underlie Generalization
Hippocampus encodes spatial information, which links sensory features
to context. It is well established that hippocampus contains place cells
which store memories of specific locations. Hippocampal place cells ex-
hibit maximal firing especially when a specific spatial place field is occu-
pied, which is not responding to simple sensory stimulus or specific motor
behaviors (5, 6). Each place cell is considered to possess individual place
fields and correspondingly each location is encoded by a particular cluster
of place cells, thus leading to a comprehensive mapping of an environ-
ment in hippocampus (7). Hippocampus not only encodes spatial infor-
mation, but also maps nonspatial dimension. It is shown that hippocam-
pus supports general cognitive processes (8) and bilateral hippocampus
support generalization of gradual internal learning (9). Hippocampus has
been found to selectively fire or cease to fire when mouse perceives nests
or beds, suggests that hippocampal neurons have the ability to extract
fundamental features and commonalities from various episodic experi-
ences and to then generalize them into abstract concepts and knowledge
from behavioral experiences (10). Hippocampal neurons have also been
reported to response to visual (11), auditory (12), and olfactory cues (13,
14) or combinations of those. When hippocampus encodes both nonspa-

tial and spatial features of an experience, a complex and highly organized
ensemble is introduced to build a schematic framework for multiple re-
lated memory elements (15). During mapping the environment through
spatial and nonspatial information, the neurons in hippocampus that en-
code spatial and sensory representations show characteristics of replay
and remapping, which may play crucial roles in generalization (Figure 1).

Hippocampal Replay During Sharp-wave Ripples Retrieves Experience to
Future Decisions
Replay is the sequential reactivation of hippocampal place cells that rep-
resent previously experienced behavioral trajectories, which is considered
as a crucial characteristic of hippocampus processing, storing, and up-
dating of event memories. Early in 1989, Pavlides and Winson firstly re-
ported the replay phenomenon and observed that place cells elicit higher
firing rates and increased bursting during non-rapid eye movement and
rapid eye movement (REM) sleep, which is considered as an important
form of memory processing (16). Later study found pairs of cells whose
place fields overlapped during behavior tended to fire together during
subsequent sleep, which is defined based on the presence of hippocam-
pal sharp-wave ripples (SWRs) (17). The sequential firing patterns of
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hippocampal place cells for cognitive representation in spatial naviga-
tion that encodes previously experienced behavioral trajectories can be
replayed in a temporally time-compressed format of either forward or re-
verse sequence during non-REM sleep state and during awake state, es-
pecially in a transient halt period (16–18). Hippocampal circuit could also
replay random trajectories of former cognitive map, which has potential
to generate future behavioral outcome, especially generalization (19). It
has supposed that generalization and structural learning may partially
depends on hippocampal replay, which is crucial for extracting task rule
from awake experience during replay initiation (20, 21).

It is widely accepted that sleep replay is linked to memory consolida-
tion (17, 22). Learned memory reactivation during sleep could be inte-
grated into former cognitive schema (23). Daytime naps facilitate gener-
alization of concept learning both in infants and adults in human stud-
ies (24–26). Neural recording experiments suggest hippocampal replay
during SWRs may act roles in past experience consolidation and future
plan (27, 28). Especially, replay during sleep SWRs show potential to re-
organize the spatial representations and iconic events of previous mem-
ory, which suggests that multiple experiences are integrated during sleep
SWRs to support the form of generalization (29, 30). Through downsam-
pling and compression, the hippocampal replay representation is effec-
tive in integrating knowledge, helping to generalize to a level similar to
the exact veridical replay of experience that improves generalization per-
formance. Therefore, it represents a feasible and efficient memory con-
solidation solution without compromising effectiveness (31). Feedback
blockade of SWRs during a learning process prevents integration spatial
path optimization, demonstrating the necessity of replay for generaliza-
tion (32).

Awake replay during immobility might represent neuronal trajectories
of either current environment or previously experienced environment and
is associated with the processes with ongoing memory-guided prepara-
tory behavior, such as foraging, exploratory, goal-directed or planning be-
haviors (18, 33, 34). Studies have suggested awake replay is important
for memory-guided behavior and cognition (33, 34). Different from re-
play in sharp waves during SWS, replay in awake state occurs immediately
after spatial experiences in a temporally reversed order, that allows im-
mediate evaluation of the preceding events in precise temporal associa-
tion with a current event, which maybe considered as an integral mecha-
nism for learning from recent experiences (35). It is recently reported that
awake replay is mainly dominated in past experiences of locations with a
reliably delivered reward and those not recently been visited, suggest-
ing the contribution of memory-related processes by awake replay is due
to its role in memory storage rather than in directly guiding subsequent
behaviors (36).

Awake SWRs occurred in hippocampal replay of past experiences,
which are able to predict choice of correct trials than error trials in
memory-guided decision-making (37). Hippocampal replay in awake
state contributes to decision-making especially during spatial navigation
(37, 38). Awake SWRs are suggested to support rearrangement of stored
information with novel combinations, in order to reactivate new firing
pattern for future decision-making. The replay in SWRs can preferentially
occurs in rarely experienced trajectories, to maintain integrity of cogni-
tive map or as a prereplay for prospective events (39). While the con-
trary finding indicates that hippocampal replay shows specific past expe-
riences, not a plan of future choice (36). And it is reported that there were
no trial-by-trial relationships between replay content and subsequent
behavioral trajectory (32, 40), suggesting that replay would not affect
subsequent behavior. The controversial conclusion may be caused by dif-
ferent memory types of tasks. Trajectory replay of hippocampal CA1 in ref-
erence memory tasks is proposed to predict future decision goals. On the
contrary, the trajectory replay in working memory only exhibits previous
goal arms (41). Nevertheless, replay could still facilitate the long-term
consolidation, integration, and maintenance of particular experiences as
a storage role, preparing for future tasks served in generalization.

Moreover, in human study with functional MRI (fMRI), hippocampal
replay reflects the order of previous task-state sequences, building rep-
resentations of complex and abstract tasks (42). And replay in human
hippocampus prefers weakly learned information and predicts subse-

quent memory performance (38). Through magnetoencephalography to
measure fast spontaneous sequences of representations, Liu et.al. pro-
posed that an abstract replay is a mechanism for generalizing struc-
tural knowledge to new experiences. Through replay, not only are the ex-
perienced subtrajectories connected, but also the sequence in the new
order by abstract structural knowledge can be rebuilt (21). Recent re-
searches have shown that SWRs in hippocampus act as potential func-
tional biomarkers of memory impairment in neurodegenerative diseases,
especially in Alzheimer’s disease (AD) (43–46). It is reasonable to assume
that the replay ability might be decreased in AD mice that could not be
applied to represent replay information to guide subsequent tasks for
generalization.

Hippocampal Subregional Remapping in Spatial and Nonspatial Aspects
Adapts to New Environment
In reality, it is comprised of multiple modalities of sensory features that
special spatial information is encoded by each modality for navigation,
thus leading a combination of sensory and abstract reference frames in
brain maps (47). Under multisensory environments, hippocampal place
cells can reorganize their population representations in response to the
changing factors of environmental geometric (48) or nongeometric cues
(odor, color, and etc.) (47, 49), the process of which is well known as “place
field remapping” or simply “remapping” (50). Remapping often occurs
by changes of sensory inputs (51), motivational state (52), and other in-
puts from outside environments. Intensive studies have classified remap-
ping into several types, including “global remapping,” “null remapping,”
“partial remapping,” “rate remapping,” and even “graded remapping” in
an attempt to distinguish different mnemonic conditions (7, 53–55). The
remapping of hippocampal cognitive map driven by experience encodes
location through spatial and nonspatial dimensions to predict and esti-
mate new environment (56). The working pattern of hippocampal remap-
ping makes it with great potential to abstract events into putative con-
cepts or rules, promoting transfer learning.

Numerous studies have reported all the hippocampal subregions,
including CA1, CA2, CA3 and dentate gyrus, possess place cells that en-
code place fields in navigation. When encoding experiences in new en-
vironments, hippocampal neurons show heterogeneity that CA1 place
cells fire faster than CA3, while CA1 place cells gradually shift back-
ward with experience and remap when under re-expose to the envi-
ronment one day later. Oppositely, CA3 place cells fire gradually but
display less backward and more reliable trial-to-trial and day to day dy-
namics (57). CA3/DG remapping show stronger episodic associative in-
formation, which reflects the sight effects of episodic learning (58). CA2
place cells exhibit different activity patterns from those of CA1 and CA3
that their firing rates change over time even in the same environment and
do not persistently code for space or contexts (59). CA2 neurons remap to
social stimulus, termed social-remapping cells, indicating the preferen-
tial reactivation of CA2 neurons encodes social representations follow-
ing social experience and may act a role in social memory generaliza-
tion (60). It is interesting but unknown whether CA2 neurons have po-
tential in remapping to abstract emotional states for reorganizing social
subjects (61, 62).

Under different circumstances, hippocampal firing has been verified
to contain both stable encoding (63) and transient programming (64).
For hippocampus and its related circuits, upstream brain regions (like
CA1-projecting CA3 neuronal ensembles or CA1-projecting MEC neuronal
ensembles) tend to show reproducible firing patterns and structural rep-
resentations, which lead downstream CA1 neurons remapping in a direc-
tional manner to support the generalization of transitive structure (65,
66). This indicates that remapping of hippocampal place cells is thought
to play a crucial role in learning generalization. Therefore, this combined
stability and flexibility leads hippocampal circuits to encode both exter-
nal fixed circumstance and draw cognitive maps with change environment
of related experiences. Firing fields of hippocampus could be generalized
with progress through behavior, which could be useful for linking events
in episodic memory and for planning future actions (67).

Hippocampal CA1 neurons exhibited nonspatial event-specific ele-
vated firing activities by transient theta sequence, which can be flexibly
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Figure 2. Neural circuits associated with three cortical regions in cognitive generalization with different manifestations from different species. (A) Emotion-
related brain regions mainly project to PFC and OFC; Sensory-related brain regions mainly project to PPC. (B) PFC, OFC, and PPC show similar brain area distri-
butions from humans, monkeys to rodents.

reorganized (68). Through a tilted and rotated rectangular track exper-
iment, CA1 place cells are shown to be sensitive to three-dimensional
orientations that a majority of place cells change their place fields un-
predictably, leading a partial remapping; while a minority kept the same
field in x-y coordinates of the track, neglecting z-axis. Reorganization and
reactivation of hippocampal assembles with SWRs represent the forma-
tion and expression of new spatial memory traces, suggesting the gen-
eralization potential (69). Sun et al. found a specific kind of neurons in
hippocampal CA1 that encode generalized information from a designed
task instead of precise sensory information. The neurons, called event-
specific rate remapping cells, show lap-specific activity in a square maze
composed of four indistinguishable lap events with a reward only on
lap 1. This kind of activity can transfer from square maze to rectangle,
circular and even nonspatial factor changed maze, which suggests the
hippocampal CA1 activity pattern not only reflect events but also gen-
eralize these events as rule experiences (70). A certain population of hip-
pocampal CA1 place cells has also been reported to present environment
orientation and topology. The orientation selectivity is contributed by a
redistribution of place cells remapping, which indicates that the prior
experience generalization improves predictability of future environmen-
tal representations (71).

Hippocampal neurons in primate study encode position within an ab-
stract value space and construct a map for an abstract cognitive vari-
able through place like representations (72). In human study through
fMRI, hippocampal remapping and entorhinal grid realignment predict
spatial representation, which show ability to distinguish among different

navigational experiences (73). Hippocampus is also involved in reason-
ing over social hierarchies (74). Whittington et al. proposed the Tolman-
Eichenbaum Machine (TEM), which introduces that hippocampal place
cells remapping between environments represent generalization (66).
The TEM is capable of learning the abstract set of relationships that gov-
ern social hierarchies (66). Furthermore, fMRI studies in humans have
shown that hippocampus can encode more cognitive variables, such as the
sequential nature of a nonspatial tasks (42) and social interactions (75,
76). The human studies integrated with rodent and primate researches
together to reveal the crucial role of hippocampal remapping in spatial
and nonspatial related memory generalization.

The Prefrontal Cortex Required for Abstraction and Categorization is
Essential for Generalization
Generalization requires the abstraction of pattern features or principles
that are commonly occurred across experiences, which is in certain de-
gree dependent on the ability of PFC neurons (3, 77). Initially, it was con-
sidered that the PFC supports abstract, or verbally-mediated, semantic
knowledge rather than sensory-based properties (78). While, it is now
widely accepted that PFC neurons are capable of encoding a diversity of
information by stimulation of different sensory modalities and controlling
“high order” behaviors, which include category abstraction, rule learning,
etc. (79–82). Regarding to category abstraction, it can be divided into the
specific and generalized representations that are organized and deter-
mined by different subregions of PFC (83) (Figure 2). In a dot-pattern cat-
egorization task performed by monkeys, the ventral PFC is shown to be
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responsible for processing more low-level abstractions via bottom up dy-
namics of stimulus-locked gamma power and spiking, while the dorsal
PFC (dlPFC) is capable of processing more high-level abstractions via top-
down dynamics of beta power and beta spike-local field potential (LFP)
coherence (84). In humans under a reinforcement learning paradigm, it
was demonstrated the rostrocaudal architecture of the frontal cortex is
responsible for rapid rule learning at multiple levels of abstraction, es-
pecially under novel behavioral context (85), indicating its capacity of
generalizing past learning to new problems. Patients with PFC lesions
exhibited impaired acquisition of second-order in abstract rule learning
when performing a hierarchical reinforcement learning task (86). In mon-
keys performing a rapidly learned task based on the formation of abstract
concept, bilateral lesion of lateral PFC significantly impairs rule rever-
sal rather than acquiring roles, while would not affect either under tasks
without concept-based role. These implicate that lateral prefrontal cor-
tex (LPFC) is responsible for modifying abstract rule after establishment,
which might not be renewed in the absence of PFC (87). Considering the
importance of PFC in categorization and abstraction, we will illustrate the
role of PFC in generalization in terms of both individual neural activity and
neural ensembles representation.

In rodent experiments, mice learn rule-based categorization and gen-
eralize to novel stimuli during the entire learning process. During learn-
ing, neurons in the PFC display different dynamics in obtaining category
selectivity and different engagement in subsequent rule-switching tasks,
which is the key to rule-based categorization (88, 89). When rats perform
a medial prefrontal cortex (mPFC)-dependent rule-switching task on a
plus maze, the principal neuron in mPFC primarily represent a general-
ized form of space via encoding the relative position between the start
and the goal. And independent of hippocampus, mPFC can imitate en-
tire spatial trajectories via replaying ordered activity patterns in gener-
alized positions, indicating its role in flexible behavior (90). In mouse,
through repeatedly imaging individual cells in mPFC during a “Go”/“No
Go” rule-based categorization learning paradigm, Reinert et al. reported
that a subpopulation of neurons is selectively and uniquely responsible
for categories and reflect generalization behavior. Therefore, the cate-
gorical neuronal representation is acquired gradually rather than tem-
porarily recruited, indicating that neurons in the mPFC are part of the spe-
cific semantic memory of the learning category (91). Neuron ensembles in
mPFC of rats are responsible for applying abstract structure to a new situ-
ation based on their selective firing patterns, which become less selective
for perceptual features but more selective for common rational features
and immediately generalize to the new situation (92), suggesting mPFC
has the ability of developing a knowledge structure and adapting it to new
experiences.

In monkeys performing “match/nonmatch role” experiment, which
requires rule-based comparisons of similarities or differences between
stimuli that generalize to multiple examples, single neuron recording
demonstrates that some prevalent neuronal activity observed in both dor-
solateral PFC and ventrolateral PFC reflects the coding of abstract rules
(93, 94). When performing visual symbol response in a repeat-stay strat-
egy, neurons in mPFC of monkeys display selective activity in choosing
which is not only based on fixed mapping, but also based on abstract
strategies during trial-and-error learning (95). In a series of studies of
number rules, a high proportion of recorded cells in the PFC encodes in-
formation about the number, generalized across changes in the physical
appearance changes (96, 97). In rule switching tasks, monkeys are capable
of switching between rules and generalizing the rules to new examples.
The substantial proportions of neurons in mPFC show constantly chang-
ing neural activity to adapt switching rules (98, 99). In monkeys perform-
ing a cognitive-set-shifting task, a cluster of neurons in the inferior ar-
cuate region of PFC were identified to be selective for shifting cognitive
set. While, pharmacological inactivation impairs the performance of be-
havioral shifting, further suggesting this region supports cognitive shift-
ing between rules (100). The dorsal anterior cingulate cortex and puta-
men of monkeys exhibit different representations during new rule learn-
ing that neurons in the cingulate cortex mainly rotate toward the role for
a policy searching while neurons in the putamen exhibit a magnitude in-
crease following the rotation of cortical neurons for enhancing the con-

fidence of the newly acquired role-based policy (101). Neurons could ro-
tate to decrease the angle to rule in order to change strategy of learn-
ing. For single neural activity, the readout of a neural ensemble can im-
prove performance because of a change in individual neuron properties
or because of a change in weights given to each neuron by a readout
node.

Neural populations in response to structure in PFC show represen-
tative features of generalization in the neural geometry level that are
not apparent at the level of individual neurons. Through a linear classi-
fier to decode a large number of different variables, when monkeys per-
form serial-reversal learning tasks with different hidden and explicit vari-
ables, it was observed that neural ensembles in PFC represent multiple
variables in a geometry to reflect abstraction and support generalization
in novel situations (2). The mPFC stores representations of the common
spatial structure, termed schema, across environments. While, through
high-resolution fMRI approach determining the roles of PFC and hip-
pocampus in human participants during spatial environments retrieval,
pattern separation and repulsion have been found in different subregions
of hippocampus (102). Similar to hippocampus, neural activities in mPFC
holds similar firing patterns between places with similar task contexts.
What’s more, the mPFC replays organized sequences of positions indicat-
ing generalized behavioral trajectories. The mPFC trajectory replay per-
forms both in the forward and the reverse sequences, indicating that it
is not a mere rehearsal but an abstraction of the original experience.
Through regulation of hippocampal activity, neural representation of a
subset of PFC ensembles generalizes across different paths, which pro-
vides a potential mechanism for generalization across individual experi-
ences (103).

Memory processing through mPFC has been involved using prior
experience to improve learning of new tasks (104). Activity in PFC is as-
sociated with representing the structure of ongoing tasks (105). Neu-
ral computational model of PFC underlies the framework of hierarchi-
cal predictive coding, which indicates individual neurons in mPFC encode
multiple task variables with a more abstract stimulus value code. fMRI ex-
periments in human study reported that the ventral medial PFC (vmPFC)
and its functional connection with visual cortex, as top-down control
of sensory cortices, construct abstract representations through a goal-
dependent valuation process (106). Through novel tree-like categoriza-
tion task performed by human participants and analyzed via computa-
tional model comparisons, it is shown that mPFC traces accumulated
hierarchical conceptual knowledge along time, and mPFC and hippocam-
pus both update trial-to-trail information, indicating mPFC and hip-
pocampus are required for the integration of accumulated evidence and
instantaneous updates into hierarchical concept representations as time
goes by (107). In a compositional representation task, fMRI and multivari-
ate pattern analysis demonstrated that LPFC can transfer practiced rule
presentations into novel contexts, guiding cognitive performance in novel
circumstances (108).

The OFC with Value-guided Characteristic Reestablishes Cognitive
Map with New Information
The role of OFC in generalization depends on its pivotal function in
decision-making, which is associated with the heterogeneity of OFC neu-
rons. OFC shows different responses to sensory inputs during decision-
making, such as relative and economic values (109, 110), reward- and
value-based behaviors (109, 111–115), expected or predicted outcomes
(116, 117), confidence estimates (118), cognitive map of task space (119,
120), regret (121), and credit assignment (122). Wilson et.al. proposed a
theory that OFC may encode the current abstract state of a task for re-
inforcement learning. They hypothesized that OFC can distinguish tasks
with similar sensory inputs but different kernels, indicating that OFC can
categorize events, based on different concepts (120). OFC encodes task
structure representation as a more general role, which can also include
value representation derived from the task structure.

Single neuron responses are essential for understanding representa-
tion in nature, for individual neuron contributes in a different way to the
ensemble encoding of stimuli and performs a different profile of tuning
a subset of the stimuli to provide high capacity and generalization. OFC
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neuronal activity correlates with economic value, representations are
usually much more specific to elements of task structure, indicating that
OFC contains an abstract representation of decision confidence (123). OFC
does not show specific activity in simple or even some complicated learn-
ing tasks. While, tasks that force animals to adjust their behaviors in light
of new learning are generally dependent on OFC function. Outcome deval-
uation depends on OFC activity, which encodes specific sensory features
of outcomes (111, 124, 125).

OFC has been reported to support abstract representation of multi-
sensory decision-making (126). A statistical confidence computation and
predicted behavioral reports of confidence can be underlined through
OFC activity. Masset et al. found that single neuron in OFC of rats can
generalize statistical decision confidence information regardless of sen-
sory modalities to predict multiple confidence-guided behavior during
decision-making (127). Researchers have found that OFC neurons respond
transiently to the rule switching during reversal learning tasks. Through
a reversal learning task for head-fixed mice, a subpopulation of OFC neu-
rons was found to display remapping activity in order to respond to up-
dated sensory inputs, and particularly, that dynamically interact with
sensory cortex to implement computation and form plasticity for flex-
ible sensory processing and adaptive decision-making (116). Zhou et
al. reported that neural ensembles of OFC in rats can converge low-
dimensional neural code across both problems and subjects to general-
ize common structure of the problems and its evolution, thus forming a
schema for supporting a complex cognitive operation (128).

Primate studies show that OFC lesion significantly impairs the abil-
ity of acquiring and reversing the concept-based rule (87). OFC is essen-
tial to distinguish different concepts and classify similar rules. Through
performing a Wisconsin Card Sorting Task by macaques, the neural firing
rates in OFC change reliably for rule identity and rule category (129). The
same group further found that the OFC neurons are also activated in re-
lation to rule shifting during cognitive set reconfiguration (130). Social
characteristics can also be encoded by OFC, which represents facial cat-
egories related to social and emotional behaviors. Neurons, called face
cells, encode the intrinsic properties conveyed by the face and its expres-
sions, suggesting that this cluster of neurons in OFC abstract social in-
formation through faces and generalize to other facial expressions with
similar physical properties (131). Lesion studies suggest that the OFC in-
volves the evaluation of decision outcomes and effectiveness of updating
rules (132, 133).

In human studies with fMRI, OFC has also been proposed to act as a
cognitive map of spatial task and provides strong support for the state
representation theory of OFC (134). This experiment requires participants
to conjecture the trial type, which is a hidden state that needs to be
learned from previous trials. OFC is found to represent task states, rather
than explicit values. Other human researches also proved that OFC repre-
sents hidden states (75, 135). OFC activity is also required for the distant
and unseen future consequences of goal-directed actions (136). A theory
model recently argues that representation of value in OFC is relevant to
its more general role in representations of task structure (137). Together,
neural recordings in rodents, primates, human imaging, and neural stim-
ulation studies have highlighted the essential role of OFC in performing
higher-order representations related to abstract information.

OFC is also involved in emotional processing. The dysfunction of the
OFC may cause symptoms of affective disorders, such as anxiety, depres-
sion and impulsivity. It is reported that emotion-related diseases are also
associated with cognitive dysfunction. Early life stress–mediated mice
model shows impairment of rule-reversal learning, indicating deficit of
generalization-related process might function as a potential indicator of
OFC impairment-related diseases (138).

PPC with Perceptual Stimulus of Historical Experience
Guides Generalization
PPC also contributes to generalization. This is not surprising since PPC
plays an essential role in sensory-mediated decision-making and catego-
rization behaviors that supports generalization to varying degrees. PPC
contains two encoding patterns: heterogeneous encoding for specific rep-
resentation and comprehensive encoding for globe representation, which

together shows potential advantage to generalization. For instance, neu-
rons in the inferior parietal lobule in primates encode different types of
movements, respectively, in a structured sequence (139), similar to ro-
dents research in hippocampus, which represents lap numbers in round
track (70). PPC has been shown to encode a large variety of sensory-,
cognitive-, and motor-related signals during a wide range of behavioral
contexts and tasks (140), including working memory (141, 142), spatial
navigation (143, 144), especially in encoding for locations in egocentric
space, decision-making (145), top-down and bottom-up attention (146,
147) and episodic memory (148). PPC seems to encode information in
a low dimension, which can represent different aspects of physical fea-
ture, such as shape classification (149), movement direction, and count-
ing number (150).

Recent findings indicated that the PPC plays an important role in
memory updating (151). Using a goal-reaching task in mouse, it was
shown that PPC implements and updates to forecasts, when prediction
uncertainty decreases because of new sensory inputs (152). The PPC has
been proposed to act as a sensory history buffer for use in a future rel-
evant experience (153). PPC ensembles are required for both encoding
and the recall of associated memory. Retrieval suppression of the corre-
sponding PPC cell population dissociates experience from pre-exposed
context and leave individual memories intact, which suggests that PPC
ensembles can flexibly bind or unbind to different information. This pro-
cess underlies that PPC abstract experience from events, leading to the
formation of generalization. PPC is highly related to the processing of pre-
vious experience information, which represents previously learned sen-
sorimotor associations to guide decision-making in seeking reward on
new sensory stimuli. Inhibition of PPC decreases performance of reward
based categorical decision-making on new sensory stimuli, which indi-
cates that PPC is crucial for abstracting task rule from previous expe-
rience and applying that in similar tasks with new cues. PPC could en-
code previous category knowledge to counterbalance the uninformative
influences.

It also suggests that PPC may act an important role in reward based
generalization (154). For different task diagrams in working memory, PPC
neurons carried far more information about the sensory stimuli of previ-
ous trials. Inactivation of PPC improves working memory performance and
results in less interference with experienced stimuli (155). Although si-
lencing PPC neural activities leads to opposite task performance in differ-
ent task paradigms, this is consistent with the function of PPC in previous
stimulus process, which is related to memory generalization. In addition,
through long-term neural recording of PPC, the neural firing pattern of
PPC has been found to be reorganized across days about task features.
There exists a neural ensemble that represents a new activity pattern
when mice learn a new associative task, indicating this neural ensemble
possess malleable activity patterns that might be required for abstract-
ing learned representations (156). The generalized categorical encoding
in PPC suggests it is involved in a wide variety of abstract cognitive func-
tions beyond categorization. PPC is most likely a node in the network me-
diating abstract cognitive computations.

Quite a few primate studies also show the function from categoriza-
tion to generalization in PPC (also known as LIP in primates). In working
memory based visual motion categorization task, categorization training
influences cognitive encoding in PPC, suggesting task-specific mnemonic
encoding in PPC. While PPC displays strong activity in both discrimination
and categorization tasks. PPC is selectively engaged in cognitive abstrac-
tion (157). Parietal cortex is found to encode shape selective information
of visual stimulus to present generic categorical outcomes. PPC neurons
also form associations between different features. A same population of
neurons can encode learned associations in separate task, which impli-
cates a foundation of learning generalization (149). In number rule task,
there is a substantial proportion of neurons in PPC cortex encoding nu-
merical information, which is conveyed by auditory and visual stimuli, in-
dicating PPC acting its role in multimodal representations of abstract nu-
merical information (158–160). In addition, single neural activity in PPC
can also represent rule shift in rule switching tasks.

In human study through fMRI, visual processing is divided between a
ventral and dorsal stream specializing in object recognition and vision for
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action. Dorsal stream has been reported to enhance action and identity
information, leading to an abstract representation in PPC (161). PPC and
primary motor cortex show a connection between motor memory forma-
tion and neural representation. This connection supports intrinsic (body
based)-extrinsic (world based) space for generalization pattern, which in-
dicates that representation of learning is based on a combination of local
representations in intrinsic and extrinsic coordinates (162). PPC is more
active during the execution of novel than that of practiced instructions
but show similar activities between the execution phase and the instruc-
tion phase. This pattern implies that the PPC support cognitive processes
in both the encoding and the execution of novel instructions (163).

Hippocampal-cortical Connections in Generalization
Cortex and hippocampus are strongly interacted by direct and indirect
pathways. Many studies have highlighted interactions between the hip-
pocampus and the PFC that acts an essential role in episodic memory.
While we know little about the function of hippocampal–cortical inter-
actions in generalization, there are three main pathways existing be-
tween the PFC and the hippocampus: Firstly, a monosynaptic projection
is from ventral hippocampus to mPFC, as well as OFC. The complemen-
tary learning systems theory is proposed to discuss the generalization
of hippocampus-dependent memories (164, 165). In this theory, the hip-
pocampus represents individual memories, and the common features are
abstracted by cortex. In the process of memory consolidation, the mem-
ory generalization emerges through information transformed from hip-
pocampus to cortex. Secondly, the mPFC bidirectionally communicate
with hippocampus through intermediate medium: thalamic nucleus re-
uniens (NRe). A model is reported to underlie the mechanism of the
NRe’s control of memory generalization (166), in which NRe regulates hip-
pocampal excitability persistently, thereby controlling memory general-
ization (167). mPFC-NRe-hippocampus circuit may regulate memory gen-
eralization by actively controlling hippocampal remapping. Thirdly, the
mPFC connects to medial and lateral entorhinal cortex, which produces
strong projection to hippocampus. This pathway is required for processing
object and event representations (168, 169). Hippocampal-cortical rep-
resentations corresponding to multiple-to-one associations reflect the
ability of neural connection in abstracting similar and repeated features
of ongoing tasks.

Researches show that hippocampal-cortical communications connect
specific-to-general links (90, 103). In a mouse study of reversal learn-
ing problems with same structure but different physical implementations,
the PFC showed similar representations across problems, suggesting its
role in abstracting common structure for generalization, while hippocam-
pus is more highly influenced by specific problems, indicating it takes
charge of the specific structure of the current situation (170). In addition,
Zhou et al. reported that hippocampus and the OFC of rodents function
complementarily in familiar environments, that the OFC encode current
situation while hippocampus ensembles support prospective memory for
future performance in a cognitive map (171). Through concept-learning
tasks in humans with model-based fMRI, Bowman et al. found that an-
terior hippocampus and the vmPFC work together to modulate the ab-
straction of concept during generalization via abstracting information in-
tegrated from multiple events, particularly, hippocampus integrates and
forms generalized memory representations, while the vmPFC contributes
by representing these abstract categories and aiding their applications to
new situations (172). In human-related study, Mizrak et al. demonstrated
through fMRI studies that hippocampus and OFC highly correlated to dif-
ferentiate between context-determined and context invariant task struc-
tures after learning, suggesting their cooperation in guiding selections of
future decision strategies (173). Though there are few studies displaying
the hippocampal-cortical neural connections for common structure/role
abstraction in different tasks, which are the basis for cognitive general-
ization, thus further studies revealing the neural networks among hip-
pocampus and cortex that influences cognitive generalization should be
considered.

Discussion and Prospect
The ability of generalization, which reflects the ability of learning and
memory, is crucially required for adaption of novel circumstances both

animals and humans. In this study, we mainly focus on reviewing the
neural mechanism on the generalization from hippocampus and cortex
in rodents, primates, and humans. We summarized that hippocampus
show characteristics of remapping and replay activities, which represents
changed states in new but similar task contexts applied to abstract rules.
The activation of PFC, PPC, and OFC is necessary for decision-making and
goal achievement through context dependent abstract rules. Single neu-
ral activity and neural geometry both display heterogeneity and general-
ity of PFC when abstract rules are formed and used for guiding behaviors
to assessment of decisions. PPC, by virtue of its vast connectivity, par-
ticipates in multiple cognitive processes, especially in decision-making,
planning and categorization. It also mediates some abstract and symbolic
cognitive capacities. PPC neurons represent previous sensory experience
to guide decision-making on new sensory stimuli. OFC is a key brain region
in reward evaluation. Its feature of updating value judgments supports
abstract representation of decision-making. All these studies through ro-
dents, primates, and humans have implicated the potential neural mech-
anisms of generalization, laying a solid foundation for understanding the
neural basis of cognitive function.

Remapping, a hallmark of cognitive flexibility, occurs when encoun-
tering a new situation, based on the fact that the new situations share
similar feature with previous experiences. However, it is counterintuitive
that remapping may indicate generalization. Because remapping means
variations in different forms of neural activities to deal with changes of
sensory or cognitive inputs, while generalization suggests that neurons
show common activity patterns to respond similar but slightly differ-
ent environments or perceptual inputs. Interestingly, it was shown that
single neurons in primate hippocampus exhibit similar functions as ro-
dent’s place cells to encode space information through value place fields,
which can be remapped to adapt changed but gradually correlated en-
vironments, leading to generalization of maps (72). This contradiction
could be explained due to different reference coordinate system. The po-
sitional changes of external sensory inputs result in neural remapping,
while when treating sensory inputs as reference coordinate system, the
similar neural patterns occur in response to different environments. Tak-
ing an example of goal-vector cells, which are active at certain distances
and directions from goals to permit rapid generalization to novel goals in
novel environments (72, 174), based on the fact that the new situations
share similar feature with previous experiences. Therefore, we may pro-
pose a hypothesis that neuronal ensembles carrying generalization prop-
erties could remap in a direction-guided manner according to changes in
different environments.

Hippocampal neurons change dynamically to realize cognitive gener-
alization. Most studies focused on the populational ensembles of place
cells and their functional connection of remapping and replay with cogni-
tive generalization. However, hippocampal place cells are only accounted
for half of the recorded population. It was recently reported that, there is
a distinct subset of neurons in hippocampal CA1 exhibits weak spatial se-
lectivity but gradually develops correlated activity with place cells, thus
effectively links discrete place fields of place cells into map-like struc-
ture after latent learning and during sleep (175). Through large-scale
longitudinal two-photo calcium imaging of hippocampal CA1 neurons, it
was found that hippocampal neural activity progressed along with im-
proved animal behavioral efficiency and showed similar patterns within
and across tasks, but undergoes a series of decorrelation steps and fi-
nally resulted in orthogonalized task-specific representations, indicat-
ing the dynamic changes of hippocampal population plays crucial role
in generalizing learned states into novel situations (176). Contrasted to
the place cells with consistent and temporally adjacent spiking in spa-
tial place fields, isolated spikes in hippocampal CA1 were found to pref-
erentially occurs during hippocampal theta oscillations and transiently
encodes nonlocal spatial situation, indicating its association with the
evaluation of distant physical locations. Furthermore, these events are co-
ordinated with ongoing activity of PFC, evidencing the interactions across
brain regions, especially hippocampal-prefrontal cortical networks (177).
These studies suggest the heterogeneity of hippocampal neurons and
their coordination with multiple brain networks should be considered for
their possible neural representations in cognitive generalization.
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In this manuscript, we reviewed different brain regions of cortex, es-
pecially the PFC, OFC, and PPC, in cognitive generalization cross different
species. It is known that PFC functions as a critical hub in the brain to ma-
nipulate many high ordered cognitive behaviors, such as future planning,
problem solving, new environments adapting, and so on. Due to ethical
issue, many related studies are based on single neuron recordings or neu-
ral circuit regulation in nonhuman (rodents and primates) models. How-
ever, the connectivity patterns, parcellation, and layered structure of PFC
in humans are different from rodents, but to a lesser extent in primates
(178). In anatomical view, rodents have a putative homolog of the agranu-
lar medial frontal cortex and OFC of primates; while, the granular frontal
cortex (dlPFC) lacking in rodents is composed of the largest part of PFC
in most primate species (179, 180). Evolutionally, basal primates possess
a small granular PFC, while mode advanced simian species, like humans
own an increasingly larger granular PFC (178, 181). In functional view,
the PFC across species exhibits a high degree of functional homology,
particularly when considering its involvement in complex cognitive func-
tions like decision-making, memory, and abstract rule learning (178). For
instance, the mPFC in rodents mediates similar cognitive functions like
decision-making and attention as that in primates and dlPFC in humans,
although they are not anatomically equivalent (182). OFC is phylogeneti-
cally originated from PFC in humans, that has essential role in value-based
decision-making. Ongur and Price have demonstrated that the laminar or-
ganization and cellular distribution in the OFC of humans and monkeys
share similar features (183). Comparative neuroanatomical studies also
made clear that, central OFC and vmPFC in monkeys are homologous to
that in humans separately and belong to distinct networks (184). Lesions
with OFC in different species all exhibited similar features that impair-
ments occurs in reversed contingencies, but not in learning (111, 185–
187), suggesting the OFC composes a common framework for processing
generalization across species. However, when issuing these cortical re-
gions in cognitive-related functions, there are still discrepancies existing
since there are differences in multiple aspects, including anatomical dif-
ferences across species, different behavioral tasks applied as well as dif-
ferent neural recording methodologies for evaluation of the connectivity
between neural activity and behaviors. Therefore, future research should
bridge methodological and task-based differences to explore the role of
hippocampal-cortical networks in cognitive generalization across differ-
ent species.

Cognitive generalization requires concept/rule/structure abstraction
and the formation of higher-order representations. This process necessi-
tates capturing precise neural dynamic to represent abstract rules, con-
cepts and decision-making, as well as measuring large-scale network
activity to unveil functional connections among brain regions, includ-
ing hippocampus, and PFC and associative cortical areas. As evidenced
in many studies, single-unit or populational (LFP) recordings are basi-
cally applied in studies of rodents/primates, which exhibit high spatial
and temporal resolutions and provide direct insight into how individual
neurons encode specific roles versus specific experiences, or how neu-
ral populations represent hippocampal replay to link memory retrieval to
memory generalization. But it only limited its use in animals or neurosur-
gical patients and also fail to displaying broader network interactions. For
human studies, fMRI is a powerful tool that owns high spatial resolution
for identifying localization of brain regions (e.g., vmPFC, hippocampus)
involved in rule abstraction and can also track cross-brain network inter-
actions in generalization. However, fMRI has poor temporal resolution and
only measures indirect neural activity. Therefore, a multimodal, integra-
tive approach combining high temporal and spatial resolution techniques
will provide the most comprehensive insights into how the brain general-
izes knowledge across different contexts.

Studies have shown impairment of cognitive generalization is tightly
related to neurological diseases. In preclinical, autosomal dominant AD
mutation carriers exhibit significant memory generalization impairment,
which is associated with the left hippocampal volume (188). In a recog-
nition and categorization of visual dot pattern tasks, impaired ability of
recognition was shown in patients with both mild AD and moderate AD
and impaired categorization found in patients with moderate AD (189).
In a study of AD, it was reported that the remapping activity of hippocam-

pal CA1 neurons is severely disrupted and the grid cells in MEC impaired
in model mice of AD, indicating that memory generalization deficits in
AD might be associated with hippocampal remapping dysfunction and
disrupted hippocampal-MEC circuits (190), which could be further stud-
ied. In addition, dysfunction of the mPFC has been found in various neu-
rological and psychiatric disorders, such as depression, anxiety disor-
ders, schizophrenia, autism spectrum disorders (ASD) (191). Patients with
schizophrenia display deficits in abstracting perceptual categorization
and are strongly drawn attention from task-irrelevant conflicting abstract
rules (192). Their memory deficits are associated with hypoactivation in
caudal LPFC regions and hyperactivation in rostral LPFC regions (193).
Young kids with ASD have difficulties of learning abstract rules, while
adults with ASD struggle to categorize atypical exemplars and form pro-
totypical presentation (194, 195). These neurological diseases further re-
flect the functional integrity of PFC is necessary for generalization. This
will further provide clues (which might be potential biomarkers or preclin-
ical diagnosis) for generalization dysfunction-related neurological dis-
eases and shed light on the intervention and treatment of these diseases.
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