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The influence of gonadal hormones on neurological health and disease is a rapidly developing domain in fundamental and clinical neuroscience.
Sex hormones, directly or via their neurosteroid metabolites, impact monoaminergic, cholinergic, and peptidergic neurotransmission and play
essential roles in shaping brain organization and function under normal and pathological conditions. The clinical expression of various
neurological disorders may be modified by hormonal fluctuations related to the menstrual cycle, pregnancy, menopause, and oral contraceptive
use. Understanding these interactions could lead to targeted hormonal and antihormonal therapies for diverse neurological conditions,
including but not limited to catamenial epilepsy, Parkinson disease, and acute intermittent porphyria.
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Introduction
This paper is dedicated with heartfelt gratitude to Dr. Seymour (Si)
Reichlin whose mentorship during a fellowship in neuroendocrinology at
Tufts (1987–1988) continues to inform my career. For neurologists such
as myself, the scope of clinical neuroendocrinology broadens significantly
when considering the pervasive influences of circulating gonadal hor-
mones on neurological disease expression. This article examines the di-
verse range of central and peripheral nervous system disorders affected
by reproductive hormone fluctuations. The review focuses predominantly
on steroid–neural interactions in women, given that the relatively stable
(tonic) pattern of androgen secretion in men makes it more challenging to
delineate the roles of testicular hormones in the natural history of neu-
rological disorders.

Hormonal changes associated with specific stages of the menstrual cy-
cle, pregnancy, menopause, and exposure to exogenous sex hormones can
impact the release and metabolism of neurotransmitters and neuromod-
ulators, potentially triggering or altering the semiology of various neu-
rological and neuropsychiatric conditions. This review covers the major
categories of human neurological disease—vascular, metabolic, inflam-
matory, degenerative, and others—with emphasis on how these condi-
tions manifest in women. Neurological disorders that respond to specific
hormonal and antihormonal therapies are highlighted. The involvement
of gonadal hormones in psychiatric conditions such as depression, psy-
chosis, and premenstrual syndrome is covered in other sources (1).

Steroid–Neural Interactions
Sex steroids exert vital organizational and activational influences within
the nervous system. Organizational effects entail the permanent differ-
entiation of neural circuitry responsible for sexual dimorphism (masculin-
ization or feminization) during critical periods of brain development. On
the other hand, the activational effects of sex hormones in the mature
brain are largely reversible, essential for regulating the hypothalamic-
pituitary-gonadal axis (Figure 1) and establishing gender-appropriate
patterns of sexual, aggressive, cognitive, and autonomic behaviors (1).
The topographies of estrogen, progestin and androgen target neurons
exhibit considerable overlap within the mammalian neuraxis (2, 3). In
both sexes, estrogen-binding neurons are concentrated in the preoptic
area, medial basal hypothalamus, medial amygdala, and circumventricu-
lar organs. Estrogen-binding neurons also reside, to a lesser extent, in the
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basal forebrain, hippocampus, several thalamic nuclei, sensory regions of
the brainstem and spinal cord and the neonatal neocortex. In addition
to neurons, some periventricular astrocytes also contain gonadal steroid
receptors and undergo biochemical and morphological changes after
chronic estrogen exposure (4, 5). The latter may account for the ability of
sex steroids to modify patterns of growth and differentiation of certain
human glial tumors.

In neurons, sex steroids and their metabolites regulate the biosyn-
thesis of enzymes and structural proteins involved in neurotransmission,
cell membrane function, energy metabolism, and hormonal sensitivity. At
the molecular level, progestins, estrogens, and androgens interact with
specific receptor proteins within the cytoplasm or nucleus of target cells.
These steroid–receptor complexes can either activate or repress the tran-
scription of various genes by binding to steroid response elements in their
promoter regions. In addition to altering gene transcription profiles, sex
steroids may influence neural functions through epigenetic regulation of
cellular DNA methylation status (6). For example, estrogens influence the
activity of DNA methyltransferases and reduce promoter methylation of
brain-derived neurotrophic factor (BDNF), a protein critical for neuronal
maturation and synaptic plasticity and implicated in Alzheimer disease
(AD); testosterone impacts histone acetylation and methylation through
modulation of histone acetyltransferases and histone deacetylases which
may impact dopaminergic signaling in Parkinson disease (PD); and epige-
netic modifications of the progesterone receptor may affect the natural
history of breast cancer and endometriosis and their neurological com-
plications (7–10). Sex hormones may also modulate neuronal discharges
via rapid, nongenomic mechanisms. A significant pathway mediating the
latter involves the central synthesis of neurosteroids from hormone pre-
cursors secreted by the ovaries, testes, and adrenal glands. Neurosteroids
acutely modulate neuronal firing by altering GABA-A receptor–mediated
chloride conductance, either enhancing or attenuating inhibitory signal-
ing. Positive modulators like allopregnanolone, allotetrahydrodeoxycor-
ticosterone, and androstanediol increase GABAergic transmission thereby
reducing excitability, which may ameliorate epilepsy and mood disorders.
Conversely, sulfated neurosteroids such as dehydroepiandrosterone sul-
fate and pregnanolone sulfate increase neuronal excitability by decreas-
ing GABAergic tone and promoting calcium influx through NMDA recep-
tors, neurophysiological effects which may support memory in AD and
other dementing disorders (11–13).
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Figure 1. The brain-pituitary-ovarian axis (simplified). �4A, delta-4-androstenedione; ACh, acetylcholine; DA, dopamine; E1, estrone; E2, estradiol; FSH, follicle-
stimulating hormone; G, ghrelin; GnRH, gonadotropin-releasing hormone; 5-HT, 5-hydroxytryptamine (serotonin); I, insulin; K, kisspeptin; L, leptin; LH, luteinizing
hormone; NE, norepinephrine; P, progesterone; T, testosterone.

Migraine
Migraine, the most common type of vascular headache, is approximately
three times more prevalent in adult women than men and may be over-
represented in persons with endometriosis and the polycystic ovarian
syndrome (14). Depending on the stringency of diagnostic criteria ap-
plied, anywhere from 18%–60% of female migraine sufferers experience
a worsening of headaches around menstruation (catamenial migraine)
(15). The intensity or frequency of migraine attacks often decreases dur-
ing pregnancy, especially among those with menstrual-related migraines.
However, many women who experience relief during pregnancy report a
relapse of symptoms at or soon after childbirth. In some cases, breast-
feeding may help prevent the recurrence of migraines. Migraine may also
emerge or intensify during pregnancy or the perimenopausal phase (1).

The reduction in plasma estradiol (but not progesterone) during the
late luteal phase is thought to play an important role in the onset of cata-
menial migraine. In pregnancy, the lack of cyclic estrogen withdrawal may
help reduce migraine activity. Estrogens can affect migraine by acting
directly on vascular smooth muscle or by modulating the activity of va-
soactive substances at neurovascular junctions. Perimenstrual estrogen

fluctuations may influence central serotonin, prostaglandin and/or opioid
metabolism, which could stimulate vasoregulatory mechanisms in the hy-
pothalamus or brainstem leading to symptomatic changes in cerebrovas-
cular tone (16). Prolactin, which exhibits pronociceptive effects, and oxy-
tocin, which has antinociceptive properties, have recently been implicated
in the expression of migraine and may contribute to sex-dependent dif-
ferences in the prevalence of this disorder (17). Prolactin directly sensi-
tizes sensory neurons and increases the release of calcitonin gene-related
peptide (CGRP), a neuromodulator that promotes migraine in suscepti-
ble patients and is currently a major therapeutic target (18). Additionally,
the lower prevalence of migraine in adolescent and adult men relative
to women of similar age may, in part, be androgen dependent in light of
the antinociceptive effects of testosterone on sensory neurotransmission,
CGRP release, neuroinflammation, and cerebrovascular tone (19).

Women using oral contraceptives may experience new-onset vascu-
lar headaches or an exacerbation of pre-existent migraine. These attacks
typically occur during the initial cycles, especially on placebo days when
estrogen levels drop, and generally subside once the contraceptive is
discontinued. Migraine sufferers who develop focal auras while on oral
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contraceptives may face a heightened risk of infarction in the affected
brain areas (1).

Perimenstrual migraine is often manageable with dietary, psycholog-
ical, and pharmacological approaches commonly used for migraine treat-
ment in general. Sumatriptan and other serotonin 5-HT1D receptor ago-
nists are effective for both noncatamenial and menstrual migraines (20).
For severe, refractory cases of catamenial migraine, late luteal phase
therapy with prostaglandin inhibitors (nonsteroidal anti-inflammatory
drugs) and/or mild diuretics may provide relief. Oral contraceptives may
aggravate migraine and are probably best avoided in this context. Estro-
gen implants and the antiestrogen tamoxifen have shown mixed results.
Some women have reported significant symptom relief from menstrual
migraine following treatment with the testosterone derivative, danazol
or the dopamine agonist, bromocriptine (16, 21). To avoid risks of terato-
genesis, nonpharmacological methods (such as relaxation training and
biofeedback) should be prioritized when managing migraine during preg-
nancy. Acetaminophen with codeine or nonsteroidal anti-inflammatory
agents may be used for more severe episodes, while meperidine, mor-
phine, chlorpromazine or glucocorticoids may be necessary for prolonged,
refractory migraines (status migrainosus) during pregnancy. Hormone
replacement therapy (HRT) may help with perimenopausal migraines,
though this must be weighed against the potential risk of breast cancer.
For women experiencing perimenopausal migraine with hot flashes, ven-
lafaxine or fluoxetine may be of benefit (1).

In addition to migraine, factors such as menstruation, pregnancy, and
menopause may impact the presentation of cluster headaches, paroxys-
mal hemicranias, and other trigeminal autonomic cephalalgias (22).

Stroke
The use of oral contraceptives has been identified as a significant risk fac-
tor for thromboembolic cerebral infarction, cerebral venous thrombosis,
and subarachnoid hemorrhage. Risk factors such as age over 35, hyper-
tension, smoking, and migraine further increase stroke risk for individuals
on oral contraceptives. Recent declines in thromboembolic disease rates
among oral contraceptive users are likely due to reduced doses of estro-
gen in modern formulations (e.g., 25–35 μg compared to earlier 50–75 μg
preparations). Ultra-low-dose oral contraceptives (<25 μg ethinyl estra-
diol) may not elevate stroke risk in normotensive, nonsmoking individuals
(23). There is, however, conflicting evidence regarding HRT and its effects
on stroke incidence, with some studies showing neutral, increased, or de-
creased risk. Notably, large, randomized trials have demonstrated that
HRT with 17β-estradiol or conjugated equine estrogen, with or without
medroxyprogesterone acetate, may worsen outcomes for women predis-
posed to stroke or coronary artery disease (24, 25). Conversely, HRT with
transdermal low-dose estrogens, alone or combined with micronized pro-
gesterone, may be beneficial in minimizing chances of ischemic stroke
(1). Men with the common ESR1 c.454-397CC variant of the estrogen
receptor-α (ERα) gene may be more vulnerable to ischemic stroke than
those with other ERα genotypes, after adjusting for age, smoking, di-
abetes, hypertension, and lipid levels (26). The pathophysiology of sex
steroid–related stroke, in particular the multifaceted impact of gonadal
hormones on circulating lipid profiles, coagulation factors, platelet func-
tion, and atherogenesis, is reviewed elsewhere (1, 27).

Clinically, ischemic strokes linked to oral contraceptive use are local-
ized to both the carotid (primarily the middle cerebral artery) and ver-
tebrobasilar systems. In young women with oral contraceptive-related
stroke, neuroimaging or pathological evidence of widespread vascular
disease is typically absent (28).

Exogenous gonadal hormones should be promptly discontinued and
may be unsuitable for future use in young women who present with
a stroke syndrome. Management of ischemic stroke related to hor-
mone exposure should follow general protocols, including standard phar-
macotherapy (antiplatelet agents, anticoagulants, fibrinolytics), inter-
ventional neuroradiology (e.g., mechanical thrombectomy, stents) and
rehabilitation. Early implementation of intravenous thrombolysis (tissue
plasminogen activators) may benefit both men and women with acute
ischemic stroke, though re-canalization (reperfusion) tends to be more
effective in women (3, 29).

Former and current users of moderate- to high-dose oral contracep-
tives have an estimated fourfold increased risk of subarachnoid hem-
orrhage compared to the general population. However, the odds ratio
for hemorrhagic stroke in current users of low-dose estrogen contracep-
tives (20 to 35 μg) is negligible relative to former users or nonusers.
Similar to ischemic stroke, factors such as cigarette smoking and age
over 35 significantly increase the occurrence of subarachnoid hemor-
rhage in oral contraceptive users (1). Gender differences in intracere-
bral hemorrhage due to hypertensive arteriopathy, amyloid angiopathy,
vascular malformations, and Moyamoya disease have also been docu-
mented (1, 30). In rare cases of periodic subarachnoid hemorrhage due
to spinal canal endometriosis, treatment may include progestins, GnRH
agonists/antagonists, oophorectomy, and possibly vascular endothelial
growth factor receptor inhibitors (e.g., sunitinib) (3, 31).

Movement Disorders
Parkinson Disease
Idiopathic PD is an aging-related movement disorder characterized by
degeneration of dopaminergic neurons in the substantia nigra that oc-
curs about twice as frequently in men than women. Interestingly, fe-
male predominance has not been observed in leucine-rich repeat kinase
2 (LRRK2)-associated PD, the most common monogenic form of the ill-
ness (32). A large-scale study comparing drug-naïve men and women
with early-stage idiopathic PD, matched for motor impairment, found
notable gender differences in nonmotor symptoms: men showed more
pronounced deficits in olfaction and in specific cognitive areas (global
cognition, memory, and visuospatial skills), while women exhibited
higher levels of trait anxiety (32, 33). Initial anecdotal reports indicated
that exposure to exogenous estrogen may worsen both idiopathic and
neuroleptic-induced parkinsonism, ostensibly by dampening dopamin-
ergic neurotransmission in the nigrostriatum. However, studies on pre-
menopausal women with idiopathic PD disclosed perimenstrual worsen-
ing of motor symptoms when estrogen levels decline (1, 34). The effects
of postmenopausal HRT in women with PD are mixed, with reports sug-
gesting HRT may be beneficial (35–37), detrimental (38) or inconsequen-
tial (39). Early menopause, whether natural or surgical, has been identi-
fied as a possible risk factor for PD (40, 41), which may be mitigated by
postmenopausal estrogen replacement (41). However, a large prospec-
tive study found no evidence that estrogen reduces the risk of developing
PD. Additionally, a case-control study identified steroid contraception as
a potential PD susceptibility factor, with an adjusted odds ratio of 3.27
[95% confidence interval (CI): 1.24–8.59; p = 0.01] (42). Sex differences
in responses to treatment of PD have been recognized and may be driven,
at least in part, by hormonal factors. Men tend to respond better to motor
symptom control with dopaminergic agents and deep brain stimulation
(DBS) than women; the latter may be more prone to levodopa-induced
dyskinesias (involuntary movements) and are more likely to experience
mood-related adverse effects of DBS (32, 43).

Of potential therapeutic interest, cerebrospinal fluid and plasma lev-
els of allopregnanolone are reportedly low in idiopathic PD. This neuros-
teroid has been shown to stimulate neurogenesis in the substantia nigra,
modulate dopamine release and enhance motor control in animal models
of the disease (3, 44).

Wilson Disease
Wilson disease is a rare genetic disorder of copper metabolism marked
by low blood ceruloplasmin levels, hepatic cirrhosis, copper deposits in
the cornea (Kayser–Fleischer rings) and degenerative changes in the basal
ganglia. In both healthy individuals and patients with Wilson disease,
serum ceruloplasmin and copper levels may rise during pregnancy and
following the use of steroid contraceptives. In women with Wilson dis-
ease, diagnosis may be delayed due to the “normalization” of ceruloplas-
min levels following steroid contraceptive use. This false normalization
provides no therapeutic benefit and may even be linked to neurological
decline (e.g., abnormal movements, seizures, psychosis) in some cases (1,
45). It is unknown whether gonadal hormones similarly elevate cerulo-
plasmin levels in other conditions featuring abnormally low concentra-
tions of the protein, such as acquired copper deficiency and hereditary
aceruloplasminemia (46).
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Chorea
Choreiform movements (jerky, nonrhythmic motions involving the face
and extremities) may arise as complications of pregnancy (chorea gravi-
darum) and oral contraceptive use. Chorea associated with pregnancy
and oral contraceptives is more common in individuals with a history of
rheumatic fever or Sydenham’s chorea. Oral contraceptives may also in-
duce chorea in women with a background of congenital cyanotic heart
disease, the antiphospholipid antibody syndrome, systemic lupus ery-
thematosus and Henoch-Schönlein purpura; and they may exacerbate
dyskinesias in chorea-acanthocytosis (1). Approximately 20% of affected
women may experience relapses during future pregnancies. Women with
dyskinesias linked to oral contraceptive use are at increased risk of de-
veloping chorea gravidarum and the reverse is true as well (1). Hormonal
changes associated with pregnancy and the use of steroid contracep-
tives can unmask latent chorea by enhancing dopaminergic neurotrans-
mission in basal ganglia previously damaged by hypoxic or rheumatic
encephalopathy (1, 47).

Women with gestational or contraceptive-related chorea may also ex-
perience fever, neuropsychiatric symptoms, dysarthria (slurred speech),
pendular reflexes or limb hypotonia. Chorea gravidarum and dyskine-
sias related to contraceptive use generally resolve following childbirth
or upon discontinuation of the medication. In cases of suspected chorea
gravidarum, clinical and laboratory assessments are recommended to rule
out other causes, such as hyperthyroidism, rheumatic fever, Wilson dis-
ease or systemic lupus erythematosus. Since chorea gravidarum is typi-
cally self-limiting, abortion or early delivery is seldom necessary. In more
severe cases, dopamine antagonists (neuroleptics) may provide symptom
relief. Those with a history of chorea gravidarum or contraceptive-induced
dyskinesias should likely avoid further use of estrogen-containing medi-
cations (1, 47).

Other Movement Disorders
Variations in gonadal hormone levels and/or sex steroid–related symp-
tom fluctuations have been reported in patients with tardive dyskine-
sia, Tourette syndrome, hemiballismus, restless legs syndrome, hered-
itary and posthypoxic myoclonus, familial episodic ataxia, dominantly
inherited myoclonic dystonia, the neuroleptic malignant syndrome,
drop attacks, progressive supranuclear palsy and the Woodhouse–Sakati
syndrome (1, 48).

Epilepsy
The course of epilepsy and its management can be significantly af-
fected by various phases of the reproductive cycle and exposure to hor-
monal contraceptives. Certain seizure disorders may worsen premenstru-
ally (catamenial epilepsy), at ovulation or during pregnancy. A large study
(49) found that menstrual irregularity between ages 18 and 22 was asso-
ciated with a higher risk of epilepsy (relative risk 1.67, 95% CI: 1.12–2.51).
Although the menstrual cycle and oral contraceptives appear to have
limited clinical effects on anticonvulsant pharmacokinetics, gestational
plasma levels of phenobarbital, phenytoin and valproic acid may drop
by 30%–40% from pre-pregnancy levels, with smaller decreases seen
for carbamazepine. Primidone levels generally remain stable, though the
concentration of its metabolite, phenobarbital may be reduced during
pregnancy (1).

Seizure disorders and their treatments can interfere with normal re-
productive functions (50). Conditions such as hypogonadotropic hypog-
onadism, polycystic ovary syndrome, and hyposexuality may result from
abnormal limbic discharges in patients with temporal lobe epilepsy (1).
Curiously, left-sided temporal lobe seizures are more likely to cluster at
the onset of menses, whereas right-sided temporal seizures tend to occur
more randomly throughout the menstrual cycle (50).

Estrogens and progestins exhibit opposing effects on seizure activ-
ity, with estrogens being epileptogenic and progestins having anticon-
vulsant properties (50). Estrogens and certain sulfated neurosteroids en-
hance glutamatergic neurotransmission while reducing GABAergic ac-
tivity, thereby promoting epileptogenesis, whereas progesterone and
specific pregnane and androstane neurosteroids counteract these ef-
fects. Perimenstrual seizure activity may be triggered by an increased
estrogen-to-progesterone ratio during the late luteal phase. Similarly,

elevated estrogen-to-progesterone ratios typical of polycystic ovary syn-
drome may partly explain the frequent association of this infertility con-
dition with temporal lobe epilepsy. Estrogen-progestin contraceptives do
not appear to significantly worsen seizure control in women with epilepsy
(1) and the impact of HRT on seizure control in epileptic postmenopausal
women is minimal or nil (51). However, elevated estrogen levels result-
ing from gonadotropin therapy for assisted reproduction may worsen
seizures in epileptic women; and interactions between enzyme-inducing
anticonvulsants and hormones used in gender-affirming treatment for
transgender individuals are also of concern (1). In gestational epilepsy,
factors such as insufficient anticonvulsant levels, sleep deprivation and
stress are often more critical determinants of seizure activity than di-
rect hormonal triggers. Decreased drug compliance, lower bioavailabil-
ity, increased distribution volume and enhanced metabolic clearance con-
tribute to reduced anticonvulsant levels during pregnancy (1, 51).

Oral contraceptive failure is more common in women with epilepsy
who are treated with phenobarbital, primidone, phenytoin, carba-
mazepine, and ethosuximide (52). Topiramate and felbamate may also
affect gonadal hormone pharmacokinetics, reducing contraceptive effec-
tiveness (53). While valproic acid does not reduce contraceptive efficacy,
it may induce hyperandrogenism and the polycystic ovary syndrome. Oral
contraceptive failure is generally not an issue for women taking viga-
batrin, gabapentin, levetiracetam, clobazam, zonisamide, lacosamide, or
lamotrigine (1). Tiagabine may cause breakthrough bleeding, though its
overall effect on gonadal steroid metabolism is small (54). Most anti-
convulsants associated with oral contraceptive failure induce the hep-
atic cytochrome P450 enzyme system (e.g., CYP3A4), thereby accelerat-
ing the breakdown of reproductive steroids. Additionally, anticonvulsants
can (a) increase the production of sex hormone-binding globulins, lead-
ing to lower levels of circulating free (active) hormones, and (b) enhance
the clearance of gonadal hormones by promoting their sulfate conjuga-
tion and glucuronidation in the liver and intestines (1).

Management strategies for catamenial epilepsy include: (1) premen-
strual or periovulatory increases in anticonvulsant doses or the addi-
tion of an adjunct antiepileptic drug, such as clobazam; (2) cyclic use
of a mild diuretic, like acetazolamide, which has modest anticonvulsant
properties; and (3) progesterone supplementation, administered orally
or via suppository (55, 56). During pregnancy, more frequent monitor-
ing of antiepileptic drug levels is advisable, with dose adjustments (typ-
ically increases) as needed. Early-phase clinical trials have evaluated the
antiepileptic properties of ganaxolone, an analog of allopregnanolone
(3α-hydroxy-3β-methyl-5α-pregnane-20-one), which acts as a positive
allosteric modulator of GABA-A receptors. Ganaxolone has shown promise
in animal models and, in randomized, placebo-controlled trials, reduced
seizure activity in adults with drug-resistant partial-onset seizures and
children with refractory infantile spasms. The drug was generally safe and
well tolerated, with dizziness and fatigue being the most commonly re-
ported side effects (57, 58). Ganaxolone lacks hormonal activity thereby
precluding potential risks associated with progestin therapy (59).

Multiple Sclerosis
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of
the central nervous system (CNS), most commonly diagnosed in men and
women during their reproductive years. An earlier age at puberty may be
a predisposing factor for MS in girls but not boys (60). While oral contra-
ceptive use does not appear to impact the risk of developing MS, it may
delay the disease’s onset (61). Contrary to previous medical assumptions,
the overall effect of pregnancy on MS-related morbidity is minimal (62).
While MS symptoms may worsen in the first 3 months postpartum, this
is often balanced by an improvement in disease activity during the third
trimester (63). The reduction in disease burden during the third trimester
in MS (and other immune-mediated conditions) is likely due to a state of
relative maternal immunosuppression, which helps prevent rejection of
the semiallogenic fetus. A host of circulating steroidal and protein factors
has been implicated in pregnancy-related immunosuppression including
α-fetoprotein, cortisol, estradiol, human chorionic gonadotropin (hCG),
human placental lactogen, interleukin-10, pregnancy-associated glyco-
protein, progesterone, 1,25-dihydroxyvitamin D3, and allopregnanolone
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(1, 64, 65). The influence of menopause on the natural history of MS is
uncertain (66).

MS attacks during pregnancy can be managed with intravenous
steroids. Interferons should be discontinued at least three months be-
fore planned conception and are not recommended during pregnancy or
breastfeeding. An Israeli study reported that none of 14 pregnant women
with relapsing-remitting MS who received prophylactic intravenous im-
munoglobulins immediately after delivery experienced a relapse within
the following 6 months (67). Preliminary findings suggested that oral es-
triol may be beneficial for women with MS, and transdermal testosterone
may offer benefits for men with the condition (68). A recent literature re-
view concluded that estriol may have modest anti-inflammatory, and pos-
sibly neuroprotective, effects when administered as an adjunct to first-
line immunomodulatory medications in female patients with MS (69).
Women, especially during their reproductive years, tend to exhibit more
robust responses than men to first-line disease modifying treatments
such as interferon-beta and glatiramer acetate. However, women may ex-
perience more pronounced untoward effects (liver enzyme elevation, lym-
phopenia) of fingolimod and dimethyl fumarate, and may be at higher risk
than men for infusion-related reactions and autoimmune complications
accruing from monoclonal antibody (natalizumab, ocrelizumab) exposure
(70, 71).

Commonly used immunomodulatory medications for the management
of MS, such as beta-interferon, glatiramer acetate, dimethyl fumarate
and fingolimod, do not appear to diminish the effectiveness of hormonal
contraception. Less is known regarding the potential impact of natal-
izumab, ocrelizumab, ofatumumab and other anti-MS biologics on sex
steroid metabolism (72).

Alzheimer Disease
AD is a prevalent form of dementia marked by progressive neuronal de-
generation, gliosis, significant depletion of acetylcholine and other neu-
rotransmitter imbalances and the buildup of amyloid plaques and neu-
rofibrillary tangles in the basal forebrain, hippocampus, and association
cortex (73). By the turn of the millennium, promising reports suggested
that estrogens play an important role in normal human cognition, have
beneficial effects on Alzheimer symptoms and protect normal women and
those with Down syndrome against the development of AD (1, 74). Ev-
idence was also adduced suggesting that postmenopausal estrogen re-
placement therapy may stave off dementia in women with PD (75) and
that testosterone (76, 77) or estrogen (78) treatment may confer cog-
nitive benefits to elderly men with AD or mild cognitive impairment.
Fundamental research had shown that estrogens exert trophic effects
on cholinergic neurons in the rodent basal forebrain, promote dendritic
spine (synapse) formation, activate functional N-methyl-D-aspartate
receptors (important for memory) in the adult rat hippocampus and
induce significant neuritic growth in rodent hypothalamic explants. Es-
trogens also exhibit antioxidant properties, reduce the deposition of fib-
rillar β-amyloid, modulate apolipoprotein E expression, suppress inflam-
matory responses associated with neuritic plaque formation and increase
cerebral blood flow and glucose utilization—both of which are deficient
in individuals with AD (1). More recently, sex steroids have been impli-
cated in AD pathophysiology via their effects on autophagy, epigenet-
ics, glymphatic function and the gut microbiome (79–81). Other repro-
ductive hormones, such as prolactin, oxytocin, and follicle-stimulating
hormone, and several X-chromosome coded genes (e.g., the demethylase
gene, kdm6a), may also contribute to sex-specific manifestations of AD
pathology (82).

Despite the initial optimism, in the randomized Heart and Estrogen/
Progestin Replacement Study (HERS), cognitive function scores showed
no difference between women treated with estrogen and progestin and
those receiving a placebo (83). Furthermore, in the large Women’s Health
Initiative Memory Study (WHIMS), the hazard ratios for developing de-
mentia were 1.49 for women randomized to receive 0.625 mg of conju-
gated equine estrogen and 2.05 for those receiving 0.625 mg of estro-
gen plus 2.5 mg of medroxyprogesterone acetate, compared to placebo-
treated controls (84)! Based on these disappointing findings, current
guidelines advise against using estrogen/progestin replacement therapy

to reduce dementia risk in postmenopausal women. Nor is there sufficient
evidence to support or oppose the prescription of androgen replacement
for cognitive dysfunction in elderly men (1). Some have argued that the
large therapeutic trials may have overlooked a critical perimenopausal
“window” during which HRT might help protect against AD. Further con-
founding interpretation, hot flashes have been associated with greater
brain amyloid burden. It is therefore is possible that women experienc-
ing severe menopausal symptoms—and who are more likely to use estro-
gen replacement therapy—may be at increased risk of dementia that is in-
dependent of hormonal exposure (85). Recent, large meta-analyses may
permit more nuanced insight into the role(s) of HRT as a modifier of de-
mentia risk: Data from 34 randomized controlled trials involving 14,914
treated participants and 12,679 controls indicated that estrogen-only
therapy initiated during midlife or close to menopause onset was asso-
ciated with improved verbal memory. In contrast, estrogen-progestogen
therapy administered in late life was linked to declines in several cogni-
tive domains (86). In apolipoprotein E4 (APOE4) carriers enrolled in the
European Prevention of Alzheimer’s Disease (EPAD) Cohort, HRT was as-
sociated with larger entorhinal and amygdala volumes and improved de-
layed memory, suggesting a targeted strategy to mitigate AD in this high-
risk subpopulation (87).

Neurosteroidogenesis may play a role in the pathophysiology of AD
(88). Studies have reported reduced levels of DHEA-S in plasma and cere-
brospinal fluid, as well as lower allopregnanolone concentrations in the
prefrontal cortex, of individuals with this condition. Allopregnanolone
may support cognitive health by reducing β-amyloid pathology, suppress-
ing microglial activation (neuroinflammation), enhancing hippocampal
neurogenesis and reversing learning and memory deficits in animal mod-
els of AD (1). It remains to be determined whether modulation of central
neurosteroid biochemistry can be leveraged to therapeutic advantage in
patients with AD and other dementing afflictions.

Sleep Disorders
In women, sleep architecture is influenced by puberty, menstruation,
pregnancy, and menopause. Sleep-related complaints are generally more
common in women than men. Gender differences in sleep patterns
emerge after puberty and may increase susceptibility to sleep disorders.
For instance, insomnia is more prevalent in women, with the gender gap
widening as age advances. Restless legs syndrome also occurs more often
in women, while obstructive sleep apnea and rapid eye movement (REM)
sleep behavior disorder are more frequent in men (89, 90).

The mechanisms by which altered gonadal hormone levels and their
effects on neural targets within the diencephalon and brainstem influ-
ence human sleep physiology remain poorly understood. In women, hy-
pogonadism may disrupt normal sleep architecture by prolonging sleep
latency, reducing REM sleep periods and increasing nocturnal movement
arousals (91). In addition to the effects of fluctuating gonadal steroid con-
centrations, follicle-stimulating hormone may contribute to disruption of
sleep patterns during the menopausal transition (92). Hyperandrogenism
complicating the polycystic ovarian syndrome may predispose to obstruc-
tive sleep apnea in women (ibid.). The higher prevalence of obstructive
sleep apnea in men may be attributed not only to differences in gonadal
steroid profiles but also to sex-based variations in neuromuscular reflexes
and central ventilatory control (89). Complex interactions between sex
hormones and melatonin, a neurohormone secreted by the pineal gland,
may impact sleep behavior in men and women. Estrogen and melatonin
mutually affect each other’s metabolism and jointly regulate sleep-wake
cycles and REM sleep patterns; progesterone enhances melatonin synthe-
sis which, in turn, may promote restorative sleep in persons with sleep
apnea; and testosterone may suppress melatonin secretion and thereby
contribute to sleep disturbances in aging men (93–96).

In a study of 33 postmenopausal women, combined estrogen-
progesterone therapy reduced breathing irregularities, periodic limb
movements, nocturnal arousals, hot flashes, and bruxism (teeth grind-
ing) (97). For patients with central sleep apnea, progestins may help
reduce hypoventilation by stimulating brainstem respiratory centers.
However, administration of progesterone to healthy men may decrease
wakefulness and vigilance, effects potentially mediated by the GABAergic
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agonists, pregnanolone and allopregnanolone (98). It is noteworthy that
certain medications used to treat narcolepsy—modafinil, armodafinil, and
pitolisant (but not solriamfetol)—induce CYP3A4 and may thereby cause
hormonal contraceptive failure (99).

Nervous System Neoplasms
Meningiomas
Meningeal tumors are more common in women than in men during repro-
ductive age and are ostensibly more frequent in women who are obese
or have hormone-dependent breast cancer (1). A large Finnish study re-
ported an increased incidence of meningiomas in women undergoing HRT
(100). A substantial proportion of human meningioma specimens ex-
press progestin-binding proteins, and to a lesser extent, estrogen- and
androgen-binding proteins (101). Elevated circulating estrogen levels,
accruing from the conversion of androstenedione to estrone in adipose
tissue, may account for the higher prevalence of meningiomas in obese
individuals (1).

Women may experience exacerbation of meningioma-related symp-
toms during the luteal phase of the menstrual cycle. Clinical and ra-
diological evidence also indicates rapid growth of meningiomas during
pregnancy, often followed by spontaneous regression postpartum (102).
Meningiomas that lack progesterone receptors tend to show higher mi-
totic indices, increased necrosis, greater likelihood of brain invasive-
ness and shorter disease-free intervals (103, 104). The antiprogestin
agent mifepristone (RU 486) has been reported to stabilize or reduce the
growth of meningiomas in situ. However, the effects of progestins and
mifepristone on meningioma growth in vitro are contradictory (105). A
placebo-controlled, phase-3 trial of mifepristone involving 164 women
with meningioma was considered underpowered and therefore inconclu-
sive (106). As a cautionary note, patients undergoing chronic RU 486
treatment may require glucocorticoid replacement to offset the drug’s
antiglucocorticoid effects (107). Concerns have also been voiced that
gender-affirming treatment with estrogens, progestogens or cyproterone
acetate (a progestin with antiandrogen properties) may stimulate menin-
gioma growth in transgender women (1).

Other Tumors
Astrocytomas can selectively bind estrogens, progestins, or androgens.
In astroglial tumors, estrogen receptor-β expression often correlates in-
versely with the degree of histopathological dedifferentiation and ma-
lignancy (108). Astrocytomas have been observed to expand during
pregnancy and regress in the postpartum period. Some patients with as-
trocytomas or glioblastoma multiforme have shown clinical and radio-
logical stability following treatment with the antiestrogen tamoxifen (3).
In this context, the radiosensitizing properties of tamoxifen or its in-
hibitory effects on protein kinase C activity may play a more significant
role than its antiestrogenic actions (1). Gonadal steroid receptors and/or
responsiveness to reproductive hormones have also been identified in
oligodendrogliomas, pituitary adenomas, acoustic neuromas, anaplastic
ependymomas, hemangioblastomas, primitive neuroectodermal tumors,
lymphomas, and breast cancer metastases to the CNS (3). Direct prostate
cancer metastases to the CNS are rare and their sensitivity to androgen
deprivation therapy is not well documented (109, 110).

Intracranial Hypertension
Estrogen-related attenuation of the blood-brain barrier may contribute
to the pathogenesis of idiopathic intracranial hypertension (pseudotu-
mor cerebri) in humans, potentially explaining the strong female pre-
disposition to this disorder. Estrogens increase cerebral endothelial cell
permeability and post-traumatic brain edema in female rats. Proges-
terone, on the other hand, reduces posttraumatic cerebral edema and
intracranial hypertension in rodents, an effect attributed to decreased
blood-brain barrier permeability and inhibition of cerebrospinal fluid pro-
duction by the choroid plexus. Gonadal steroids may impact the patho-
physiology of idiopathic intracranial hypertension by their effects on the
brain’s glymphatic system. The latter comprises a recently recognized
network of perivascular spaces that enables the movement of interstitial
fluid, solutes and waste products between the cerebral vasculature and
the cerebrospinal fluid (111).

Idiopathic intracranial hypertension may be more prevalent in women
with polycystic ovary syndrome and hyperandrogenism, as well as in
female-to-male transgender individuals receiving intramuscular testos-
terone (112). Data on the risk of pseudotumor cerebri in women using
hormonal contraception are inconclusive (113).

Neuromuscular Disorders
Myasthenia Gravis
Myasthenia gravis is an autoimmune, neuromuscular disorder character-
ized by fatigable weakness of striated (voluntary) muscle. Estrogens may
contribute to the female preponderance of myasthenia gravis and other
autoimmune disorders of the neuromuscular junction by facilitating the
maturation of Th2 cells, antibody-producing B cells, and thymic epithelial
cells. Thymocytes of female myasthenic patients overexpress estrogen re-
ceptor α subunit (ER-α) which may be responsible, at least partly, for the
relatively high prevalence of thymic hyperplasia in this population. Estro-
gens may also augment female vulnerability to myasthenia by epigenet-
ically silencing the autoimmune regulator (AIRE) gene. Conversely, dihy-
drotestosterone enhances thymic tolerance and dampens autoimmunity
by upregulating AIRE expression through its interaction with the andro-
gen response element in the AIRE promoter (114).

The Porphyrias
The porphyrias are characterized by an increased production of porphyrin
precursors and porphyrins due to enzymatic defects in heme biosynthesis.
Common neurological manifestations of certain porphyrias include sen-
sorimotor and autonomic neuropathies, neuropsychiatric symptoms and
seizures. Estradiol and other steroid hormones can precipitate porphyric
crises by stimulating the heme biosynthetic enzyme, δ-aminolevulinic
acid synthase. In women with acute intermittent porphyria, episodes of
neuropathy and other neurological symptoms may arise during the late
luteal phase, at ovulation or during pregnancy (115).

Long-term administration of GnRH agonists, such as leuprolide or D-
His, downregulates GnRH receptors in the pituitary leading to sustained
suppression of the pituitary-ovarian axis. An early study reported com-
plete remission of catamenial acute intermittent porphyria during an 8-
month course of D-His treatment (116). Subsequent cases of perimen-
strual acute intermittent porphyria (117) and hereditary coproporphyria
(118) also showed positive responses to GnRH agonist therapy. However,
prolonged use of GnRH analogs or antagonists may result in adverse ef-
fects such as breast tissue atrophy, hot flashes, and bone demineraliza-
tion (ibid.). It is advisable that asymptomatic relatives of patients with
genetic porphyrias avoid exposure to oral contraceptives.

Endometriotic Sciatica
Ectopic endometrial tissue (endometriosis) responds to steroid hor-
mones and undergoes sloughing and bleeding during menstruation.
Endometriosis can lead to back or pelvic pain by invading the lumbar ver-
tebrae, lumbosacral plexus or sciatic nerve sheath. This can result in radic-
ular pain, typically beginning a few days before menstruation and persist-
ing until the end of the cycle (catamenial sciatica). Symptoms such as leg
weakness, numbness, and loss of ankle reflexes may accompany the pain.
Unlike discogenic radiculopathy, neuroimaging in cases of endometriotic
sciatica often appears normal and signs of endometriosis in other areas
may or may not be evident. Surgical exploration of the sciatic nerve may
be necessary for diagnosis. In confirmed cases, the nerve appears blue and
incision of the sheath releases a dark, hemorrhagic fluid. Histopatholog-
ical examination reveals characteristic glandular structures (28, 119).

Symptoms of endometriotic sciatica are generally less responsive to
bed rest compared to far more common discogenic radiculopathy. How-
ever, the former may show significant improvement with standard en-
dometriosis treatments, including progestins, GnRH agonists, and antag-
onists (e.g., leuprolide and elagolix, respectively), or, in refractory cases,
oophorectomy (28, 120).

Other Neuromuscular Disorders
Endogenous and administered gonadal steroids, primarily estrogens,
may influence the progression of carpal tunnel syndrome, Bell’s palsy
and recurrent brachial plexopathy. These effects may largely be due to
hormone-related soft tissue swelling leading to nerve compression. In
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men with myotonic dystrophy, dysfunction of testicular peritubular my-
oid cells may contribute to hypergonadotropic hypogonadism and impo-
tence (121). Hyperestrogenemia has been observed in male patients with
Duchenne muscular dystrophy, amyotrophic lateral sclerosis, bulbospinal
muscular atrophy (Kennedy syndrome), POEMS syndrome (polyneuropa-
thy, organomegaly, endocrinopathy, M-protein and skin changes linked to
plasma cell dyscrasias) and Kugelberg–Welander disease (1). The role, if
any, of hyperestrogenemia in the pathogenesis of these neuromuscular
disorders remains unclear. High-dose testosterone has been reported to
alleviate symptoms in a patient with bulbospinal muscular atrophy, po-
tentially by attenuating the toxic gain of function linked to the mutated
androgen receptor in this condition (122).

Conclusions
One fine morning on Rounds some 36 years ago, Si quipped that “neuroen-
docrinology is a discipline in search of a disease” [pers. commun.]. While
it is indisputable that diseases of the neuroendocrine hypothalamus are
rare entities relative to, say, diabetes mellitus, dyslipidemia, and primary
thyroid conditions, the scope and volume of clinical material expand dra-
matically when the purview of clinical neuroendocrinology is understood
to encompass the myriad influences of gonadal hormones on the expres-
sion of diverse neurological disorders. Sex steroids exert powerful orga-
nizational and activational effects within the mammalian nervous system,
affecting a broad range of normal and pathological neurological func-
tions. Estrogens, progestins, and androgens may modulate the activity of
salient neural pathways directly via classical transcriptional, epigenetic
and neurophysiological mechanisms, or serve as precursors of bioactive
neurosteroids.

Links between reproductive hormones and the manifestations of mi-
graine, stroke, epilepsy, chorea, and porphyria have been amply docu-
mented. In conditions such as PD, sleep apnea, CNS neoplasms and MS,
robust sex hormone influences appear likely in light of accumulating epi-
demiological, clinical, and neuroimaging evidence. Fluctuations in sex
hormone levels can also impact psychiatric states, including late luteal
phase dysphoria (premenstrual syndrome), major depressive disorder,
psychosis, and anorexia nervosa (1). Given the pervasiveness of steroid–
neural interactions, clinicians should routinely query symptom variability
related to the menstrual cycle, pregnancy, menopause and hormonal con-
traceptive use in women with neurological and psychiatric illnesses. Fur-
ther exploration of the molecular mechanisms underlying both the salu-
tary and adverse effects of sex steroids on neurological health may guide
the development of new hormonal and antihormonal therapies for many
of the conditions discussed in this review.
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