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Since Rudolf Heidenhain first identified neuroendocrine cells in 1870,
our understanding of neuroendocrine tumors (NETs) has advanced
significantly. The increasing incidence and prevalence of NETs,
combined with complete tumor resection being the only curative
option, has driven the search for effective treatments. Peptide
receptor radionuclide therapy, which combines radioactive elements
with octreotide derivatives, has emerged as a promising therapeutic
approach. While β-particle emitters are currently used in clinical
practice, targeted alpha-particle therapy (TAT) shows particular
potential for NET treatment. This review examines the physical and
radiobiological characteristics of α- and β-particles, evaluates
preclinical and clinical evidence for TAT in somatostatin
receptor–expressing NETs, and explores both challenges and future
developments in α-particle therapy for NETs.

Introduction
In the early 1990s, peptide receptor radionuclide therapy (PRRT) was de-
veloped using 111In-DTPA-octreotide (Octreoscan) due to its properties
of releasing secondary β-radiation to cause targeted DNA tumor dam-
age. They had reasonable response rates, but responses were not durable
(1). β-emitting 90Y was the first second-generation radionuclide used for
PRRT with good symptomatic and objective response rates but a signifi-
cantly increased risk of permanent kidney damage due to tubular damage
and microangiopathy (2). Subsequently, the safer β-emitting 177Lu was
developed, and over the last decade, 177Lu-DOTATATE (Lutathera) has be-
come the most widely used PRRT and is licensed by both the Food and Drug
Administration (FDA) and European Marketing Authority (EMA). However,
despite the success of 177Lu-DOTATATE, especially following the results
of the NETTER-1 trial, patients invariably relapse in 2–3 years following
PRRT. The recent NETTER-2 trial has also shown the efficacy of PRRT for
high-grade well-differentiated tumors (3). Many strategies have been in-
vestigated to improve the effectiveness of PRRT, but targeted α-particle
therapy (TAT) has gained the most attention over the past few years. We
summarize and update the results of our recent review, to which we refer
for a more in-depth analysis of earlier studies (4).

Physical and Radiobiological Properties of α- and β-particles
1. α-particles

Alpha-particles comprise two protons and two neutrons. They
are produced in the process known as α-decay. As shown in Figure 1,
as they have high particle energy, high linear energy transfer (LET),
and a short therapeutic range (c.100μ), they cause highly-selective
double-strand breaks (DSBs) in the DNA of cancer cells, but without
affecting surrounding normal cells (4). Alpha-particles have a higher
relative biological effectiveness for the same absorbed radiation dose.

2. β-particles
The β-particle, an energetic electron, is created by β-decay, a process
in which, in an unstable nucleus, a neutron is converted to a proton
with the release of an electron. They have comparatively low particle
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energy and a low LET but a high therapeutic range (c.1mm). Due to
these properties, many more β-particles are required compared with
α-particles for a similar absorbed dose. They are also more likely to
cause single-strand breaks (SSBs) than DSB and more likely to affect
the surrounding normal cells (4).

Figure 1 and Table 1 depict the major physical and radiobiological dif-
ferences between α- and β-particles.

TAT and Neuroendocrine Tumors
223Ra-chloride (Xofigo) was the first licensed α-emitting radiopharma-
ceutical used in the treatment of prostate cancer with bone metastases.
Subsequently, several α-emitting radiopharmaceuticals, such as 225Ac,
213Bi, and 212Pb, have been used clinically in the treatment of neuroen-
docrine tumors (NETs) (5).

1. 225Ac
229Th serves as the main source of 225Ac and its parent 225Ra.
225Ac has a half-life of 9.9 days and a 6-step process decay scheme
to stable 209Bi. During this process, a total of four α-particles (of 6–8
MeV energy each) and three β-particles are emitted. A half-life of 10
days and high overall α-emission energies of 27.5 MeV render 225Ac a
potentially appealing radionuclide for TAT (4).

2. 213Bi
Being a daughter of 225Ac, 213Bi follows a similar decay scheme.
It has a half-life of 45 min and produces one α-particle but no
β-particles, with a mean energy of 8.3 MeV. It has not been used
extensively due to its short half-life, which would necessitate on-site
labeling (6, 7).

3. 212Pb
212Pb produces an α-emitting daughter 212Bi that produces a
single α-particle with a mean energy of 7.8 MeV. 212Pb is a daughter
product from the decay of 228Th: 212Pb has a half-life of 10.6 h, which
allows for ease of radiolabelling and administration (8).

Preclinical Animal Studies using TAT in SSR-expressing Tumors
All three radionuclides (213Bi, 212Pb, 225Ac) discussed earlier have
been studied in animals in preclinical trials. 213Bi-DOTATOC and 213Bi-
DOTATATE have been investigated in a rat pancreatic carcinoma model
and mice bearing somatostatin receptor (SSR)-expressing NETs, respec-
tively (9, 10). In both studies, investigators found reduction and delay in
tumor growth. They reported no significant renal or bone marrow toxic-
ity (9, 10). Stallons and colleagues investigated 212Pb-DOTAMTATE in a
rat pancreatic cell line, where they found increased median survival com-
pared with the control group. The survival was further improved by adding
5-fluorouracil. They observed reversible bone marrow toxicity at a dose of
740 kBq of 212Pb-DOTAMTATE (11). 225Ac-DOTATOC and 225Ac-DOTATATE
were investigated in mice (12, 13). 225Ac had a mean energy 70 times
higher compared with 177Lu. 225Ac-DOTATATE at a dose of <111 kBq was
found to be safe and was associated with a significant delay in tumor
growth compared with controls (12, 13).
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Figure 1. A schematic diagram of the physical and radiobiological properties of the radionuclide decay of α- and β-particles, subsequent potential DNA damage
and differences in biodistribution of both particles.

Clinical Studies using TAT in NETs
213Bi-SSA
The first-in-human TAT study was conducted in a group of 8 patients
with progressive, 90Y/177Lu-DOTATOC treatment-refractory, NETs. 213Bi-
DOTATOC was administered via the intra-arterial route (usually the hep-
atic artery) in 7 out of 8 patients; 50% of the patients showed a response
to TAT [1 had a complete response (CR), 3 had partial responses (PR)].
One patient with diffuse bone marrow metastases received one cycle of
systemic TAT with no significant bone marrow toxicity. The toxicity stud-
ies showed a mean glomerular filtration rate (GFR) reduction of 30% at
2 years following TAT. One patient developed grade 2 thrombocytopenia
following 213Bi-DOTATOC; however, he had developed grade 4 thrombo-
cytopenia following 90Y-DOTATOC therapy previously. One patient devel-
oped myelodysplastic syndrome, followed by acute myeloid leukemia on
follow-up (7).

212Pb-SSA
In a phase I clinical trial published in the Journal of Nuclear Medicine
in 2022 by Delpassand and colleagues, they assessed the effect of

the α-emitter 212Pb-DOTAMTATE (AlphaMedix) (NCT03466216) in PRRT-
naïve patients. They reported an impressive 80% disease control rate
(DCR) (70% PR and 10% CR) in the 10-patient cohort without signif-
icant acute hematological toxicity. A few patients developed transient
reversible renal toxicity. One patient with previous co-morbidities de-
veloped stage 3 chronic kidney disease (14). Following this, the US-FDA
has announced “Breakthrough Therapy Designation” for this drug in the
treatment of PRRT-naïve adults with unresectable or metastatic, pro-
gressive SSR-expressing gastroenteropancreatic neuroendocrine tumors
(GEP-NETs) (4).

225Ac-SSA
Ballal and colleagues studied the efficacy and safety of 225Ac-DOTATATE
in patients who previously had received 177Lu-DOTATATE but had stable
or progressive disease following 177Lu-DOTATATE therapy: 15 out of 24
(63%) patients had partial response and 9 patients (38%) had stable dis-
ease following TAT. No grade 3/4 hematological or renal toxicities were
seen (15). The same group reported treating 9 patients with paragan-
gliomas with 225Ac-DOTATATE, seven of whom had had 177Lu-DOTATATE

Table 1. Physical and radiobiological differences between α- and β-particles

Alpha Beta

Effects on DNA Causes more double-strand breaks (DSBs), multiple
damage sites.

The damage is less likely to be reparable

Causes more single-strand breaks (SSBs). The
damage is more likely to be reparable

Oxygenation Effective in hypoxic tumors Less effective in hypoxic tumors
Tumor crossfire No Yes
Bystander and abscopal Effect Yes Yes
Dose rates Linear exponential reduction in tumor survival as

absorbed dose increases
Low-dose rates: More SSBs with shouldering of

the dose–response curve
High-dose rates: Tumor reduction close to linear

exponential
Main mechanism of damage At low to moderate doses, it causes DSBs with less

chances of repair by cellular mechanisms.
At high doses, it causes widespread DNA damage

leading to significant cellular damage and cell death
with reduced repair capability. However, it could
cause mutations with potential long-term effects.

At low to moderate doses, it causes SSBs and
minor chemical modifications to DNA.

At high doses, it causes DNA damage at the rate
which may exceed the cell’s repair capacity,
leading to the accumulation of misrepaired or
nonrepaired DNA.

DNA repair and biological
consequences

Leads to more frequent, persistent or unrepaired DNA
breaks, higher risk of chromosomal aberrations,
apoptosis, and cell death

Fewer unrepaired breaks, more efficient and
effective repair, but potential for mis-repair
leading to mutations.

Tumor crossfire: The killing of malignant cells that are not directly bound by the antibody; Bystander effect: Radiation damage to an irradiated area
induces a cellular signal which results in similar damage to unirradiated surroundings cells; Abscopal effect: Enhanced immune system response in remote
untargeted lesions
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previously. The DCR was 88%, with no grade 3/4 hematological, renal,
or hepatic toxicity were encountered. Quality of life data showed sig-
nificant improvement in symptoms and quality of life (16). Kratochwil
and colleagues conducted a 5-year follow-up study in patients treated
with 225Ac-DOTATOC. A single dose above 40 MBq or a repeated dose
greater than approximately 20 MBq/cycle of 225Ac-DOTATOC was found
to be toxic to bone marrow. Similar to their experience with β-emitting
PRRT, an average eGFR-loss of 8.4 mL/min (9.9%) per year was seen (7).
In 2023, Demirci and colleagues evaluated the safety, stability, and effi-
cacy of 225Ac-DOTATATE in 11 patients with grade 1 and 2 NETs. Most of
them had previously been treated with 177Lu-DOTATATE. They observed
that the DCR was 89% with a median PFS of 12 months. One patient de-
veloped grade 2 renal toxicity and bone marrow toxicity, whereas no grade
3-4 toxicities were reported (17). In 2024, Yang and colleagues evaluated
the efficacy and safety of 225Ac-DOTATATE TAT in patients with NETs and
high SSR expression. They observed a DCR of 80%, and no grade 3/4 hema-
tological renal toxicities were observed (18).

Ongoing Clinical Trials
Currently, a small number of clinical trials are underway evaluating the
effects of 212Pb and 225Ac in patients with SSR-2-expressing NETs. There
is a commercial phase II study (NCT05153772) on 212Pb-DOTAMTATE
(AlphaMedix) to explore treating patients with SSR-2-expressing NETs re-
fractory to standard therapies. Primary outcome measures are overall re-
sponse rate and adverse events. This trial is expected to report later in
early 2025 (4, 19). Another 212Pb-SSA TAT has been investigated by Per-
spective Therapeutics (212Pb-PSC-PEG2-TOC) (VMT-α-NET) and is under-
going early clinical trials. In this trial, investigators will establish a rec-
ommended phase II dose (RP2D) followed by a phase IIa dose-expansion
cohort evaluating efficacy using the RP2D (19). RayzeBio Inc. is assess-
ing the efficacy of 225Ac-DOTATATE (RYZ101) in multicentre clinical trials
[ACTION-1 clinical trial (NCT05477576)] after progression through 177Lu-
SSA in SSR-expressing GEP-NETs. In Part 1 of the trial (phase Ib), they con-
cluded that 120 kBq/kg should be the recommended phase III dose. The
study will proceed to Part 2 (phase III) with a comparison of RYZ101 at 120
kBq/kg with “standard of care” in patients with GEP-NETs with disease
progression following prior 177Lu-labeled SSAs (4, 19). An investigator-
run phase I trial conducted by Fukushima Medical University in Japan
is studying 211At-meta-astatobenzylguanidine (MABG) in patients with
malignant phaeochromocytoma or paraganglioma. MABG targets adren-
ergic tissue through the norepinephrine transporter; the dose escala-
tion trial will determine safety, MTD (maximum tolerated dose), and
RP2D (19).

Limitations, Challenges, and Future Directions
As these isotopes used for cancer treatment decay relatively rapidly, are
heavily regulated, and are expensive to make, the use of TAT in a routine
clinical practice is highly challenging. For example, the use of 213Bi is lim-
ited, given its short half-life and need for onsite labeling. Additionally, its
production, purification, chelation, shipping, and administration must be
highly choreographed to be successful. Any disruption in the supply chain
can leave a patient missing a dose. Despite these challenges, several com-
panies worldwide are developing 212Pb generators, which are also read-
ily available through private and government sources. It may become the
most widely used α-emitting radionuclide (8). However, regulatory hur-
dles such as regulatory compliance on production, transportation, dis-
posal by nuclear regulatory agencies, radiation containment protocols,
complex study designs, stricter pharmacovigilance, waste disposal, and
environmental impact makes it challenging to develop and implement
TAT (20). These hurdles could be overcome by diversification of produc-
tion sources, international collaboration, early engagement with regu-
latory bodies, automated manufacturing systems, improving targeting
agents, advanced dosimetry models, international standardization, and
eco-friendly disposal methods (21).

While the studies discussed above have shown promising results, it
should be considered that reporting of the response criteria across the

different studies has varied. Another major concern is regarding hemato-
logical and renal toxicity associated with TAT. However, in a recent meta-
analysis, the incidence of toxicities was uncommon, in the range of 2.1% to
3.4%. Despite this rarity, due to the lack of robust evidence on safety pro-
files, this will necessitate careful monitoring for such toxicities in patients
receiving TAT therapy (22). Detailed previous treatment history with other
radionuclide therapy, such as β-emitting therapy with 177Lu, should also
be considered before offering TAT to patients as it increases the risk of
toxicity with TAT (23). Dosimetry (calculating the dose of radiation deliv-
ered to organs and tumors) is difficult by macrodosimetry with current al-
pha emitters. The majority of radionuclides, which emit α-particles, emit
no or little gamma irradiation or positrons for imaging with SPECT or PET,
and there is heterogeneous antigen expression among cancer cells (19).
However, Singh and colleagues have calculated image-guided dosime-
try and response assessment using 212Pb-VMT-α-NET in a patient with a
metastatic NET; the patient received a cumulative radiation dose of 3.9
Gy to the target lesions with the dose for all critical organs remained
within acceptable limits (24). Newer microdosimetry techniques of TAT,
as a function of the source-target configuration, cell geometry, other
biological factors, and cell sensitivity, should help to overcome these
hurdles (25).

Conclusions
TAT is an exciting and promising therapeutic modality for SSR-expressing
NETs. TAT has potential advantages over β-emitting therapy due to the
high energy and short path length of α-particles and overcoming radio-
resistant conditions, such as hypoxia. Although TAT-related long-term
hematological toxicity data are not available, currently available toxicity
data suggest low acute grade 3/4 hematological toxicities at defined ad-
ministered activities. The kidney may prove to be a critical organ for TAT
due to the high LET of TAT and associated renal tubular damage. However,
in due course, other ways of improving on α-particle therapy, such as have
been suggested and trialed for standard β-emitting PRRT, including the
use of chemotherapy or PARP inhibitors, may render it even more effec-
tive. These are exciting times in the realm of theranostics, and interest in
neuroendocrinology, now subsuming all neuroendocrine cells in the body
and the pituitary, builds on the fundamental work of Sy Reichlin.
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