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Sterol biosynthesis disruption by common prescription medications: critical
implications for neural development and brain health

Željka Korade1 , and Károly Mirnics2

Sterol biosynthesis is essential for cellular function, producing not only cholesterol but also critical bioactive molecules that regulate cell
signaling, growth, and membrane function. In the brain, cholesterol metabolism operates independently behind the blood–brain barrier,
maintaining its own homeostatic balance. An emerging concern in clinical pharmacology is the discovery that many common prescription drugs
unintentionally interfere with post-lanosterol sterol synthesis pathways. While acute effects of these medications are documented, their
long-term consequences for brain development and function remain unclear. Studies using cell cultures and mouse models indicate heightened
risk during pregnancy, where drug-induced sterol disruption may interact with genetic factors from both mother and fetus, particularly when
multiple medications are prescribed. This significant research gap has important implications for clinical practice. Our review consolidates
current evidence about how prescription medications affect post-lanosterol biosynthesis and outlines critical areas requiring urgent
investigation.
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Introduction: Brain Sterol Biosynthesis is Critical for Normal Brain
Development and Function
Cholesterol is essential for all mammalian cells, especially brain cells (1).
The human brain accounts for approximately 2% of total body weight,
yet it contains about 25% of cholesterol and cholesterol derivatives of
the human body (2–4). The body’s and the central nervous system (CNS)
cholesterol pools are separated by the blood–brain barrier (BBB), each
relying independently on its intrinsic cholesterol biosynthesis (5). Brain
sterol biosynthesis starts during intrauterine development and contin-
ues throughout the patient’s lifetime (5, 6). In an unesterified form, brain
cholesterol is predominantly found in the myelin sheaths and plasma
membranes of the various brain cells (2, 6).

Synapse and dendrite formation and axonal guidance are both sterol-
dependent processes, and the sterol biosynthesis pathway generates
dozens of bioactive molecules critical for normal brain function (7–11).
Preserved cholesterol homeostasis is also necessary for regular func-
tioning of the adult brain: in aging, high brain cholesterol has been
connected to better memory function, while low cholesterol is associated
with an increased risk for depression (12–14). In addition, disturbances
in cholesterol biosynthesis and/or metabolism have been reported in
Huntington’s disease and Alzheimer’s disease (15–17). Low cholesterol
concentrations may predispose an individual to aggression, impulsivity,
and violence (18–20).

Cholesterol Biosynthesis is a Complex Biochemical Process
Cholesterol is synthesized from acetyl-CoA in a long cascade of two
final parallel chains of enzymatic events called the Kandutsch-Russell and
Bloch pathways (Figure 1) (21). Conversion of the final sterol precursor,
7-dehydrocholesterol (7-DHC), to cholesterol is mediated by DHCR7 in
the Kandutsch-Russell pathway (22). In the Bloch pathway, DHCR7 is nec-
essary for the reduction of 7-dehydrodesmosterol (7-DHD) to desmos-
terol (DES) (23). Thus, disruption of DHCR7 function prevents normal
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cholesterol production through both post-lanosterol biosynthetic path-
ways and results in elevation of 7-DHC and 7-DHD and reduction in choles-
terol and desmosterol levels (24).

7-DHC and 7-DHC–Derived Oxysterols have Strong Biological Effects
Reduced cholesterol production is detrimental to the brain, but the aris-
ing pathophysiology is more complex (25). As cholesterol precursors
7-DHC, 8-DHC, and 7-DHD accumulate (24, 26, 27), a new challenge
emerges: 7-DHC is the most oxidizable lipid known to date, with a prop-
agation rate constant of 2,160 (this is 200 times more than cholesterol
and 10 times more than arachidonic acid) (28, 29). As a result, 7-DHC
spontaneously oxidizes, generating highly reactive 7-DHC–derived oxys-
terols (30), impairing cell viability, differentiation, and growth (31, 32).
The most investigated 7-DHC–derived oxysterol, DHCEO, interferes with
neuronal morphology, neurite outgrowth, and fasciculation (31, 33). Fur-
thermore, 7-DHC–derived oxysterols are simultaneously markers of ox-
idative stress (34) and biologically active molecules that modify im-
mune function (33, 35). 7-DHD and 8-DHC, while much less studied, are
also likely to generate their own oxysterols, as they have a comparable
peroxidation rate to 7-DHC (29).

Pathogenic Variants in Sterol Biosynthesis Genes Result in
Developmental Disabilities
While a complete lack of cholesterol biosynthesis is incompatible with
life, partial cholesterol production due to pathogenic variants in post-
lanosterol genes results in complex developmental disabilities (36).
Mutations in post-lanosterol biosynthesis are associated with Smith-
Lemli-Opitz syndrome (SLOS) (mutations in DHCR7) (25), desmos-
terolosis (mutations in DHCR24) (37, 38), chondrodysplasia punctata 1
[mutations in emopamil binding protein (EBP)] (39, 40), and lathos-
terolosis (mutations in SC5D) (41). All these syndromes affect brain and
craniofacial development and lead to intellectual and developmental
disabilities (36, 42).
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Figure 1. Commonly used prescription medications have a post-lanosterol
biosynthesis inhibiting effect. Pathogenic variants in the DHCR7 gene result
in SLOS with a hallmark sterol inhibition signature. This profile encompasses
the accumulation of 7-DHC and 7-DHD and the reduction of desmosterol and
cholesterol levels. Many commonly used prescription medications give rise
to similar biochemical signatures and can be considered sterol biosynthesis
inhibitors. The post-lanosterol pathway is greatly simplified for readability.

DHCR7 Inhibitors During Pregnancy are Considered Teratogens
Boland and Tatonetti published a systematic literature review in 2016,
which revealed that first-trimester exposure to DHCR7 inhibitors met the
criteria for teratogenicity. As a result, they suggested that DHCR7 activ-
ity should be considered during drug development and prenatal toxicity
assessment (43).

Many Prescription Medications have Sterol Biosynthesis Inhibiting
Side Effects
While cholesterol and post-lanosterol intermediates do not cross the
BBB, many prescription medications do so easily (44). These medications,
designed for unrelated primary indications, can interfere with develop-
mental brain sterol biosynthesis (45–51). Some medicines might directly
inhibit key enzymes involved in sterol biosynthesis, while others could in-
terfere with biosynthesis by altering gene expression, affecting the avail-
ability of substrates, or disrupting regulatory pathways (51). Regardless
of the specific mechanisms involved, the consequences of disrupted sterol
homeostasis can impact normal brain function in either case.

To date, over 30 prescription medications have been described as hav-
ing post-lanosterol biosynthesis inhibiting side effects (52, 53). Arip-
iprazole, cariprazine, trazodone, and haloperidol have been the most ex-
tensively studied regarding their effects on sterol biosynthesis (46, 48,
54, 55). While they do not have a high degree of structural similarity or
mechanism of action (except aripiprazole and cariprazine), they share a
common biochemical signature and are all CNS-targeting medications.
They are all DCHR7 inhibitors during development with a chemical signa-
ture that includes elevation of 7-DHC, 8-DHC, and 7-DHD and decreased
desmosterol and cholesterol (52). These findings have also been validated
across in vitro systems (52, 53, 56), rodent experiments and tissue types
(45, 46, 48, 49), and analyses of blood samples from psychiatric patients
and women of reproductive age (47, 54).

Single-Allele DHCR7 Pathogenic Variants Represent a
Latent Vulnerability
Rodent transgenic models and in vitro human fibroblast cultures suggest
that the DHCR7 genotype matters regarding the magnitude of sterol in-
hibition (54). Pathogenic variants of the DHCR7 gene, present in approxi-
mately 1%–3% of the human population (57, 58), might not be sufficient
to produce a disease but represent a latent vulnerability. More than 200

likely pathogenic variants of DHCR7 have been identified to date (59, 60).
While the exact pathogenic variants might vary in frequency across differ-
ent populations, the overall frequency of vulnerability appears to be com-
parable across sex and ethnic groups, with perhaps the exception of East
Asian and Korean populations (0.5%–1%) (61). DHCR7± individuals have
increased baseline 7-DHC levels. When their human fibroblasts are ex-
posed to medications with sterol-inhibiting side effects, the sterol biosyn-
thesis disruption reaches a magnitude close to that seen in patients with
SLOS (50, 54). Rodent transgenic findings on Dhcr7± mice also confirmed
these findings, providing additional insights into the potential underlying
pathophysiology. Namely, a maternal exposure model revealed that both
maternal and offspring Dhcr7± heterozygosity conferred vulnerability:
Dhcr7± pups born to Dhcr7± mothers showed the highest sterol biosyn-
thesis disruption in repose to aripiprazole, trazodone, and cariprazine (45,
46, 48). Thus, it appears that, at least in experimental systems, genetic
vulnerability and chemical inhibition synergize, with yet unknown conse-
quences on human health. The mechanism by which this gene–medication
interaction occurs remains unknown, and this might be different for the
various compounds that can inhibit sterol biosynthesis. Namely, while the
pathogenic genetic variant will reduce the availability of the DHCR7 en-
zyme, the medications can either directly inhibit the same enzyme, inhibit
another upstream enzyme in the post-lanosterol biosynthesis pathway, or
interfere with genes belonging to networks responsible for sterol enzyme
biosynthesis, degradation, or turnover. Ultimately, elevated 7-DHC and re-
lated oxysterol levels have substantial biological activities, including in-
hibiting Hedgehog response (62, 63), a key driver of normal brain devel-
opment. Similarly, the p75 neurotrophin receptor expression depends on
the cholesterol biosynthesis machinery (64).

Sterol Biosynthesis Inhibiting Polypharmacy Effects are
Synergistic or Summative
We live in the age of polypharmacy, a nationwide and worldwide challenge
(65–67). Polypharmacy is increasingly common in the United States and
contributes to the substantial burden of drug-related morbidity. Quinn
and Shah counted the incidence of multidrug combinations observed in
4 billion patient-months of outpatient prescription drug claims from
2007–2014 in the Truven Health MarketScan Databases (65). They found
that among patients taking any prescription drug, half were exposed to
two or more drugs, while 5% were exposed to eight or more. Notably, CNS
polypharmacy is particularly commonly seen in the treatment of mental
illness (68).

If genetic Dhcr7± vulnerability and chemical inhibition of sterol
biosynthesis synergize, could two or more medications with sterol-
inhibiting side effects have a similar, synergistic, or summative effect?
In vitro, rodent, and human biomaterial studies suggest this might be
the case (69, 70). Neuronal and astrocytic cultures treated with ARI+TRZ
showed an additive effect, increasing the 7-DHC/CHOL ratio by 15- to 20-
fold over vehicle-treated cultures. In addition, adult mice treated with
ARI+TRZ polypharmacy affected multiple organ systems of the body,
leading to decreased proliferation and reduction of neural progenitor
cells in the hippocampi of male adult mice and decreased expression of
microglial marker IBA1 in the brain (69, 70). Furthermore, in a study of
pregnant women taking prescription medications, it was reported that
women taking more than one medication with 7-DHC–elevating side ef-
fects had the highest 7-DHC levels in their blood, suggesting a synergistic
or summative effect of polypharmacy (47).

This raises the question of when and where will the polypharmacy ef-
fects summate or synergize. The drugs that show synergy have different
mechanisms of action, most commonly mediated through a specific re-
ceptor. If at least one medication’s inhibition of post-lanosterol enzymes
is receptor-based (and not direct chemical inhibition), the overlapping
receptor distribution will define the site of most substantial synergy. In
the case of nonoverlapping receptor distribution, synergy or summations
would not be observed; instead, it would affect a broader tissue distri-
bution where either one of the receptors is expressed. This could give
rise to a very different phenotype and suggest that each combination of
polypharmacy could have different ultimate consequences. Should this
be the case, this would be further complicated by the developmental
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timing of receptor expression vs. the timing of polypharmacy. Thus, the
same combination of sterol-inhibiting polypharmacy could differently af-
fect different organs, regions, or cell types based on their dose, timing of
polypharmacy, receptor expression pattern, mechanism of action, devel-
opmental stage, genotype, and many other factors.

There are Likely to be Multiple Developmental Vulnerability Periods
to Post-Lanosterol Inhibition
The vast majority of post-lanosterol inhibition data obtained to date has
focused on intrauterine development and maternal intake of medications
during pregnancy. However, many infants might be potentially treated
with (known or yet unknown) medications that could inhibit sterol biosyn-
thesis. Early postnatal development is also likely to be a critical vulner-
ability window (71) as this is a period of progressive myelination and
development of glial cells, both highly sterol-dependent processes. Fur-
thermore, puberty is a period of rapidly changing hormonal homeosta-
sis, synaptic pruning, and continued myelination, all strongly influenced
by sterol biosynthesis (72, 73). This is also a period where physicians are
more likely to prescribe medications with sterol-inhibiting side effects.
The overall and specific medication effects causing partial sterol inhibi-
tion are almost entirely unknown in these postnatal vulnerability periods.
Yet, the detrimental effects of post-lanosterol inhibition would not result
in dysmorphologies seen during fetal development but could have func-
tional consequences. Namely, interference with myelination and synap-
tic pruning, both sterol biosynthesis-dependent processes, could result
in changes in functional connectivity. Such disruptions would ultimately
result in learning difficulties, emotional disturbances, developmental
delay, language acquisition challenges, or behavioral alterations.

Differential Effects of DHCR7 Inhibition in Tissue and Cell Types
While representing only 2% of body weight, the brain contains 25% of the
body’s cholesterol and sterol derivatives. However, brain sterol biosyn-
thesis is not homogenous across brain regions. For example, cholesterol in
the pons and cerebellum is ∼2.5 times higher than in the neocortex (74).
Furthermore, in situ hybridization for post-lanosterol biosynthesis en-
zymes reveals markedly different expression levels across cell types, with
very high expression in the principal neurons of the hippocampus (64) and
serotoninergic cells. This later is also underscored by a functional vul-
nerability of Dhcr7± mice, revealing an increased head-twitch response
to the 5-HT2A agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane
(DOI) (75). These findings have several potentially significant implica-
tions. First, the brain is likely the most sensitive organ to developmen-
tal sterol inhibition. Second, it is likely that brain regions that have the
highest enzyme expression and sterol production are the most likely af-
fected by sterol inhibition. Third, as developmental sterol accumulation
proceeds differently across the different brain regions, the same sterol-
inhibiting medication, given at other times, might affect different brain
structures. Fourth, high 7-DHC levels are likely to affect the various brain
cell types differently, perhaps regulated by their neurochemical content.
Finally, when discussing the effects of post-lanosterol biosynthesis dis-
ruption, one must consider that sterols might be synthesized in one cell
or region. Still, they are also actively trafficked to all parts of the brain and
interchanged between glial and neuronal cells (76).

There is Still a Significant Amount of Critical Knowledge Missing
While there is plenty of evidence suggesting a cautionary approach when
using medications with sterol-inhibiting side effects during pregnancy,
there are significant gaps in our current data.

1. We have limited knowledge of how these medications interfere with
developmental sterol biosynthesis. The mechanism might be direct
inhibition of the enzyme(s) or receptor-mediated, and such informa-
tion would be essential to obtain.

2. While we understand that DHCR7 single allele pathogenic variants
might potentiate the effects of sterol inhibiting effects, such synergy
has not yet been investigated for single copy pathogenic alleles in
genes encoding other post-lanosterol enzymes (e.g., DHCR14 or EBP).

3. We do not understand the effects of elevated 8-DHC and 7-DHD and
their oxysterols. Based on their chemical structure and properties,

they are very likely to be abundant and biologically active, but no such
information is available to date (29).

4. The exact time window of a potential developmental vulnerability re-
mains unknown, as is the dose and duration of medications that could
cause potential harm.

5. We do not know whether there is a critical threshold or concentra-
tion of 7-DHC (or oxysterols) that becomes harmful to the developing
baby’s brain or other tissue (31).

6. Can co-morbidities also synergize with medication-induced inhibi-
tion of sterol biosynthesis, like polypharmacy and Dhcr7 genotype?
Diabetes, pre-eclampsia, metabolic conditions, and lifestyle factors
could theoretically make the developmental outcomes of sterol inhi-
bition much worse.

7. We are exposed to hundreds of chemicals throughout our daily lives,
and some of them have sterol inhibition properties (51, 53, 77,
78). Do these chemicals predispose to developmental disabilities, in
particular, if they are combined with the already identified sterol-
inhibiting genetic factors or prescription medications?

8. Commonly used medications can potentially inhibit other enzymes in
the post-lanosterol biosynthesis pathway (51). For example, amio-
darone alters cholesterol biosynthesis through the inhibition of EBP
and dehydrocholesterol reductase 24 (DHCR24), both of them post-
lanosterol enzymes (79). Yet, this is a greatly understudied area.

9. A recently identified Fetal Fentanyl syndrome (FFS) (80) arising in
newborns born to mothers with nonprescription fentanyl use has a
remarkable phenotypic and biochemical similarity to SLOS. This sug-
gests that FFS partially arises from sterol inhibition (81). Further-
more, a recent review found that 10 of 12 case-control and 7 of
18 cohort studies documented statistically significant positive as-
sociations between maternal opioid use during pregnancy and con-
genital malformations (82). Are these dysmorphologies a result of
sterol biosynthesis inhibition, or are they arising through an unre-
lated mechanism (83)?

10. Are there deleterious consequences of long-term use of medications
with sterol-inhibiting side effects for adults? Low cholesterol levels
appear to be associated with an increased risk for depression (84, 85,
13, 12). Furthermore, a recent study evaluating interactions between
antipsychotics and medications used in the treatment of cardiovascu-
lar disease reported the highest number of interactions among beta-
blockers and antipsychotics (66). Remarkably, the combinations that
reported the most common adverse outcomes included the medica-
tions that have been previously identified as having 7-DHC–elevating
side effects – including metoprolol and nebivolol (49).

Potential Clinical Implications and Recommendations for Policies and
Future Research
Based on the above-presented cautionary findings, we believe that in clin-
ical practice, several approaches are warranted:

� Pregnant mothers with DHC7± genotype should not be utilizing medi-
cations with 7-DHC–elevating side effects. There are usually safe alter-
natives to these medications, so this approach should rarely interfere
with the best patient treatment.

� We recommend genetic testing of pregnant women who must utilize
medications with sterol-inhibiting side effects. If prenatal testing is
also performed, it is imperative to gain insight into the DCHR7 status
of the unborn child. This is especially important when the unborn child
and mother carry single-allele DCHR7± pathogenic variants, as these
babies might be the most vulnerable to post-lanosterol biosynthesis
disruptions.

� Patients with SLOS should never receive medications with 7-DHC–
elevating side effects.

� Clinicians should be educated about the potential danger of medi-
cations with DCHR7-inhibiting side effects for the developing brain.
During pregnancy (and potentially during other vulnerability periods),
they should avoid prescribing polypharmacy that shows potential syn-
ergistic interaction on the post-lanosterol biosynthetic pathways. It
is rarely appreciated that 7-DHC–elevating medications might target

Perspective
Korade and Mirnics

https://doi.org/10.61373/bm025p.0011
3 of 6

BRAIN MEDICINE
Genomic Press

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-04-22

https://bm.genomicpress.com
https://doi.org/10.61373/bm025p.0011


bm.genomicpress.com

different organ systems (e.g., psychotropic and cardiac medications –
trazodone + metoprolol), yet their unwanted effects might converge
on the same biochemical pathway.

National regulatory organizations should pay close attention to all
the above-listed findings and develop or revise knowledge-based guide-
lines for utilizing such mediations. Furthermore, pharmaceutical com-
panies should routinely assess newly developed (and perhaps already
approved) medications for their effects on developmental sterol biosyn-
thesis. In addition, national funding agencies should invest in research to
find definitive answers to these essential public health questions. With
the rapid emergence of new technologies such as in situ metabolomics
and lipidomics (74, 86), bioinformatics, new model systems [including
induced pluripotent stem cells (iPSCs) (87) and humanized mice], and
novel, high-resolution imaging technologies, we should be able to gain
a more definitive insight in the risk-reward equation for each medication
and develop a safe, personalized treatment plan for our patients.

Conclusions
Unintended sterol inhibition by many prescription medications is well
documented, and it is a potential cause for concern when used during
pregnancy. Nevertheless, it should be acknowledged that many of the
findings presented above are obtained using in vitro and transgenic ro-
dent models. While the post-lanosterol biosynthetic pathway is highly
conserved between rodents and humans, it is uncertain which of those
findings translate to the human population. For each individual, the mag-
nitude of sterol disruption (and potential consequences for the unborn
child) will likely depend on lifestyle, dosage, potential polypharmacy,
genetic makeup, and other possible factors. Nevertheless, the above-
presented data advises caution and a conservative approach in the use
of medications with sterol-inhibiting side effects during pregnancy.
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