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A multimodal approach for treating post-acute infectious syndrome
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Long-term complications, such as extensive fatigue and cognitive issues, are known from various infections, including SARS-CoV-2, influenza
virus, or Borrelia burgdorferi. The pathology is mostly unknown and differs between patients. Unfortunately, there is currently no common and
effective treatment. In this perspective, we imply that post-acute infectious syndromes are due to a variety of factors, including among others
diminished tissue perfusion, tissue infiltration by viruses, inflammation, and oxidative stress, and that not one specific biomarker can be used
to measure these syndromes. Thus, we suggest that a score based on a number of criteria/factors should be used to assess post-acute infectious
syndromes. Consequently, probably not one single treatment can be used to treat this group of patients, and we suggest a multimodal
treatment regimen comprising a combination of pharmacotherapy, such as metformin and naltrexone with anti-inflammatory effects,
alongside physical therapies such as extracorporeal apheresis and transcutaneous neurotherapy. This combined approach aims to reduce
biomarker levels and enhance cognitive functions. This implies that a reset of the systems can be achieved by a multimodal approach based on a
score for post-acute infectious syndromes.
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Introduction
After the COVID-19 pandemic, a number of patients experience persis-
tent symptoms and physiological changes even after recovering from
the acute phase of the disease (1). The potential symptoms cover a
broad spectrum, including fatigue, breathlessness, headaches, sleep dis-
turbances, difficulty concentrating, cognitive issues, skin rashes, diarrhea,
and tinnitus (2–4). SARS-CoV-2 causing COVID-19 is not unique in this
ability to cause post-acute sequelae. Various other acute infections, in-
cluding Ebola, polio, dengue, but also influenza or bacterial infections,
such as Borrelia burgdorferi, which might give rise to Lyme disease syn-
drome (5), have been linked to an unexplained chronic disability in a sub-
population of patients (6). Post-acute infectious syndromes (PAIS) are not
new; they usually come to attention when many people are infected, such
as during pandemics, and have been described since the Russian flu (7).
The consistent symptom profiles across different PAIS, regardless of the
infecting agent, along with the overlapping clinical features with myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS), indicate the po-
tential contribution of a shared etiopathogenesis (8).

The prevalence of PAIS depends on the pathogen and varies from a few
percentages in patients having had influenza (9) to up to 70% of patients
with persistent symptoms 2 years after infection with West Nile virus
(10). For Long-Covid, the evidence suggests that, before the introduction
of the vaccines, about 20% of patients diagnosed with COVID-19 and 5–
10% of all infected persons developed long-term complications (11–14),
which fell below 5% with the introduction of vaccines and new variants
like omicron (15, 16). Interestingly, women seem to have a higher preva-
lence (6), which might at least partly be explained by the fact that women
are generally more susceptible to immune-mediated conditions (17). The
recovery period for patients with Long-Covid may vary significantly de-
pending on the severity of the disease, hospitalization, comorbidities, and
age (11, 18).
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The persistent symptoms experienced by patients with PAIS can re-
sult in significant financial losses, affecting individuals, businesses, and
economies globally. Furthermore, syndromes following acute infections
can greatly diminish quality of life, as chronic symptoms may result in lost
productivity, increased healthcare costs, and mental health issues, all of
which can interfere with personal, social, and professional life. Health dis-
parities related to PAIS have been shown to particularly affect racial and
ethnic minorities. These disparities are driven by factors such as socioe-
conomic status, discrimination, and limited access to healthcare. They are
not confined to specific regions but have global implications (18).

Factors Responsible for PAIS
The underlying mechanisms for PAIS remain poorly understood but the
current hypotheses proposed to elucidate the consequences of chronic fa-
tigue and post-exertional malaise in patients with Long-Covid encompass
diminished tissue perfusion (19), viral infiltration of tissues, inflamma-
tion in both the brain and peripheral organs (20), the prolonged presence
of SARS-CoV-2 spike proteins (21), and the reactivation of other infec-
tious agents such as Epstein–Barr virus, cytomegalovirus (CMV), and var-
ious other infectious components (22–26).

Furthermore, recent findings demonstrate that heightened lipid lev-
els represent a significant risk factor (27–29). Likewise, Long-Covid in-
duces a substantial elevation in lipids, posing a long-term risk for cardio-
vascular disease (30). Recently, it was demonstrated that in patients with
Long-Covid, a persistent dysregulation and activation of the complement
system could be observed (31). Moreover, thromboinflammatory proteins
were increased in Long-Covid (31).

Changes in blood cellular components (32–34) and the rarefaction of
vessels (35) have also been proposed as potential factors contributing
to the onset of Long-Covid subsequent to SARS-CoV-2 infection. Inter-
estingly, two distinct blood marker profiles during the acute phase of
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Figure 1. Metabolic and endocrine stress activation. The endocrine stress axis, which can be triggered by various factors such as psychological stress, physical
exhaustion, or metabolic diseases, plays a pivotal role in the body’s response mechanisms. When the endocrine stress axis is persistently activated, the body’s
immune system can become compromised, leading to heightened susceptibility to infections. Chronic or excessive inflammation can lead to tissue damage and
cell death, which might aggravate or initiate metabolic and endocrine disorders, thus perpetuating a vicious cycle. Created with BioRender.com

COVID-19 have been associated with cognitive deficits up to 1 year after
the acute infection with SARS-CoV-2. One is elevated fibrinogen and the
other is elevated D-dimer, both in relation to C-reactive protein (36).
Other studies have shown that plasma samples from patients with both
acute COVID-19 and Long-Covid contain large anomalous (amyloid) de-
posits (microclots) that are resistant to fibrinolysis (37).

The emergence of autoantibodies against G-protein coupled recep-
tors has raised concerns about their potential involvement, given their
pathogenic role demonstrated in various autoimmune disorders (38). Par-
ticularly noteworthy is the implication of autoantibodies targeting neu-
rotransmitters, such as β-adrenergic receptors, which have been sug-
gested to impact the severity of COVID-19 and contribute to Long-Covid
(6, 39). Furthermore, increased levels of autoantibodies against protease-
activated receptor-1 (PAR-1), which promotes platelet activation, has
been linked to severe COVID-19 (40–42), suggesting that these autoan-
tibodies could also play a role in Long-Covid.

It has been speculated that the activation of interferon (IFN) signal-
ing linked to SARS-CoV-2 could trigger the production of autoantibod-
ies targeting type I IFNs (17) and exacerbate local inflammation (18, 19),
thereby possibly contributing to the manifestation of PAIS.

Nonetheless, our research, along with others’, suggests that func-
tional autoantibodies against type I IFNs are unlikely to contribute to the
pathogenesis of Long-Covid (43, 44). Additionally, we observed no corre-
lation between Long-Covid fatigue scores and IFN-stimulated gene sig-
natures (43).

The Effect of Metabolic and Endocrine Diseases on PAIS
Metabolic and endocrine disorders, as well as chronic stress, can trig-
ger activation of the hypothalamic-pituitary-adrenal (HPA) axis, result-
ing in dysregulated cortisol release. Moreover, they may impact the

renin-angiotensin-aldosterone and the sympatho-adrenomedullary sys-
tem (45). Additionally, stimulation of the neuroendocrine stress axis could
result in persistent low-grade inflammation throughout the body (45).
For instance, both stress and obesity appear to exert comparable ef-
fects on brain function, attributed to the presence of neuroinflamma-
tion observed in both circumstances (46, 47). Chronic inflammation and
imbalance between proinflammatory and anti-inflammatory factors in
endocrine and metabolic diseases and in stress increases the suscepti-
bility for additional pathogenic infections, which may lead to an abnor-
mal immune response reaching pathogenic levels (48), which in turn in-
creases the risk of experiencing PAIS. The direct infection of endocrine
organs, such as pancreatic islets (49–52), adipose (53–56), or adrenal tis-
sue (57) may lead to new onset of endocrine diseases (58). Moreover,
the initial viral entry and replication in cells of metabolic and endocrine
organs can induce direct damage, ultimately resulting in cell death, ei-
ther through the immune system’s activation or the initiation of cell-
autonomous death signaling pathways (Figure 1). Additionally, immune
cells activated to produce antibodies or cytokines, along with infected
cells releasing biomolecules, may also affect noninfected cells locally and
in distant tissues (59).

In conclusion, PAIS impacts various organ systems and multiple mutu-
ally nonexclusive biomedical explanations for the pathogenesis of PAIS
can be hypothesized (60), which alone or in combination might be re-
sponsible for the development of PAIS. They probably involve unregu-
lated immune response, persistent generation of proinflammatory cy-
tokines (chronic inflammation), autoimmune-like reactions, persistent
viral replication, and microclot formation (61). Thus, managing PAIS
involves addressing a range of symptoms that include physical, cogni-
tive, and psychological aspects. Consequently, we recommend measur-
ing a panel of biomarkers to obtain a clinical indication for treatment
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in patients severely affected by PAIS. Further research involving large
groups of patients with and without PAIS is needed to determine exactly
which biomarkers should be included in such a score and their respective
weights.

Potential Treatments of PAIS
Several potential treatments for Long-Covid have been explored (62) and
recently, a systemic review of all registered clinical trials for treatment
of PAIS was conducted (63). This study showed that while most research
focuses on monotherapies, a combination of interventions is also be-
ing examined. Both pharmacotherapies and rehabilitative approaches but
also psychotherapy or complementary and alternative medicine is being
tested (63, 64). Most of these studies are still running and because of the
heterogeneity among the studies, it is extremely difficult to draw a con-
clusion at this point. Because of the complexity of symptoms of PAIS, also
the treatment is challenging and probably not one single treatment can
be used for all patients exhibiting PAIS. Here, we will discuss some of the
treatments that have shown a positive effect on Long-Covid. Current or
emerging treatments, such as nutritional supplements or restoration of
the gut microbiota, will not be discussed here as they have been recently
described elsewhere (62).

Metformin
One of the pharmaceutic therapies that shows a positive effect on Long-
Covid is the treatment with metformin. Worldwide, metformin is the first-
line drug in the treatment of type 2 diabetes mellitus (65) due to its
effectiveness, safety, and affordability (66).

Apart from its ability to inhibit gluconeogenesis and enhance insulin
sensitivity, metformin has been recognized as a powerful suppressor of
the chronic inflammatory response in macrophages. In acute inflamma-
tion, metformin reduces the transcription of interleukin (Il) 1b and Il10 by
activating AMP-activated protein kinase (AMPK) (67), whereas in chronic
inflammation, it reduces the production of reactive oxygen species (ROS)
by mitochondria, which leads to a reduction in the levels of HIF1-α and
results in decreased expression of Il1b, whereas expression of Il10 is en-
hanced (68). Recent studies demonstrated that the SARS-CoV-2 spike
protein 1 induces α-synucleinopathy through microglia-mediated inflam-
mation and mitochondrial ROS, which can be suppressed by metformin
(69). This ability of metformin to reduce the levels of inflammatory mark-
ers has led to the hypothesis that metformin could be used for the
treatment of Long-Covid. Furthermore, targeted machine learning anal-
ysis indicated that metformin use is associated with a reduced risk of
post-infection mortality in COVID-19–positive patients (70). Indeed, in a
double-blind trial, adults with overweight or obesity and SARS-CoV-2 in-
fection who took metformin for 2 weeks were less likely than those who
took a placebo to later report a diagnosis of Long-Covid (71). Similar find-
ings were observed in a study assessing the 3-month and 6-month risk of
PAIS in patients with type 2 diabetes mellitus. This study compared met-
formin users with those using sulfonylureas or dipeptidyl peptidase-4 in-
hibitors and found that metformin users had a lower risk of PAIS ((72).
These results suggest that additional interventions aimed at reducing mi-
tochondrial ROS production should be identified and subjected to further
investigation.

Low-dose Naltrexone
Another promising therapy is low-dose naltrexone (LDN) (73). Naltrexone
is an oral μ-opioid receptor antagonist. It is FDA approved for the treat-
ment of opioid and alcohol dependence standardly in high doses of 50–
150 mg/day. In low doses of 1–5 mg/day, opioid receptor signaling is not
completely blocked, which leads to endogenous production of opioids and
opioid receptors. These endogenous opioids modulate the immune sys-
tem by inhibiting the proliferation of B and T cells (74). Furthermore, on
immune cells, LDN is a specific antagonist for Toll-like receptor 4, thereby
inhibiting the production of proinflammatory cytokines (75).

The anti-inflammatory effects of LDN have been widely used off-label
for the treatment of autoimmune diseases and pain in diseases such as
multiple sclerosis, Crohn’s disease, and fibromyalgia (73, 76–78). In addi-
tion, LDN has been applied for the treatment of ME/CFS (79, 80). Recently,
LDN was tested for treatment of Long-Covid, where it demonstrated to

have a positive effect on clinical symptoms and self-reported measures
of fatigue (81–84).

Extracorporeal Apheresis
Apheresis involves the extracorporeal extraction of targeted blood con-
stituents, such as particular cells or specific plasma components. Orig-
inally devised for eliminating lipids to address severe dyslipidemias
and autoantibodies, methods for removing various pathogenic molecules
from plasma have yielded surprising additional benefits. Subsequent re-
search revealed the capacity to enhance blood viscosity by eliminat-
ing high molecular weight proteins, reduce oxidative stress by removing
oxLDL, mitigate inflammation by extracting cytokines and inflammatory
lipids and eliminate autoantibodies (85–88).

Up to 70% of patients with ME/CFS, including patients with Long-
Covid, reported a significant improvement in their symptoms after extra-
corporeal apheresis (89). We demonstrated that patients who reported
significant improvement after two cycles of therapeutic apheresis showed
a substantial reduction in neurotransmitter autoantibodies, lipids, and in-
flammatory markers. Additionally, we observed a 70% decrease in fibrino-
gen levels, and dark field microscopy revealed that erythrocyte rouleaux
formation and fibrin fibers largely disappeared post-apheresis (90). How-
ever, randomized, sham-controlled trials that are sufficiently powered
and include psychological and physiological outcomes are still lacking.

Transcutaneous Electrical Nerve Stimulation
For nontransponders of pharmacotherapy, alternative strategies are im-
portant. As mentioned above, PAIS is a complex condition containing a
neurological dimension but also cognitive and affective symptoms that
might not be pharmacologically treated. For treatment of these patients,
noninvasive brain stimulation, and in particular auricular transcutaneous
nerve stimulation (atVNS) has been suggested (91). atVNS is a brain stim-
ulation technique primarily used as a treatment for epilepsy and depres-
sion, but it is also being explored for other conditions like migraines and
Alzheimer’s disease (92).

The exact mechanism of how VNS works is not fully understood, but
it’s thought to modulate brain activity and the release of the neurotrans-
mitters gamma-aminobutyric acid and noradrenaline (93). Furthermore,
HPA axis activation is inhibited (94–96). In addition, anti-inflammatory
effects of atVNS are mediated via the α7 nicotinic acetylcholine receptor
(97), which leads to modulation of cholinergic anti-inflammatory path-
ways thereby inhibiting the release of cytokines, such as TNF-α in the pre-
frontal cortex, hippocampus, and hypothalamus, thus suppressing neuro-
logical inflammation (98).

A pilot randomized controlled trial of atVNS showed a trend sug-
gesting that atVNS may have mild to moderate effect in reducing men-
tal symptoms in a subset of patients with Long-Covid (99). Another
pilot study involving 24 female patients with Long-Covid showed signif-
icant improvements in various cognitive functions, anxiety, depression,
and sleep immediately post-intervention, with benefits persisting or in-
creasing at the 1-month follow-up. Improvements in fatigue were de-
layed, achieving statistical significance at the 1-month follow-up com-
pared with baseline (100). These findings support allocating resources to
conduct further trials and advance the understanding of atVNS as a po-
tential treatment for Long-Covid.

Multimodal Treatment
Given the absence of a single definitive biomarker for PAIS, and recogniz-
ing the significant heterogeneity among patients with PAIS, we propose
a pragmatic treatment approach. Our recommendation involves a multi-
modal treatment regimen comprising a combination of pharmacother-
apy, such as metformin and naltrexone with anti-inflammatory effects,
alongside physical therapies such as rehabilitative measures, extracor-
poreal apheresis and transcutaneous neurotherapy. This combined ap-
proach aims to reduce biomarker levels and enhance cognitive functions.
Selection criteria for this treatment should be based on presenting symp-
toms and a biomarker panel score (Figure 2). As mentioned above, addi-
tional research is necessary to identify the specific biomarkers that should
be measured and to establish the threshold scores for diagnosing Long-
Covid or other PAIS.
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Figure 2. Multimodal strategy for treating PAIS. As PAIS appears to be multifactorial in nature with a wide variety of symptoms, we propose an approach involving
the measurement of a panel of biomarkers such as different blood parameters, complement factors, inflammation markers, or neurotransmitter autoantibodies.
If two or more of these biomarkers test positive, we recommend implementing a combined approach comprising both pharmaceutical (e.g., metformin or naltrex-
one) and physical interventions (e.g., extracorporeal apheresis or auricular transcutaneous nerve stimulation). Furthermore, rehabilitative measures addressing
both physical and psychological needs should be considered. Created with BioRender.com

Ideally, the suggested multimodal treatment should be accessible to
everyone. Since both metformin and naltrexone are relatively inexpen-
sive, providing the pharmaceutical component should be feasible. How-
ever, access to specialists offering extracorporeal apheresis or atVNS is
limited, making these components challenging to implement. This un-
derscores the need for inclusive healthcare strategies and support for all
communities worldwide.

Conclusion
Long-term complications are known from various infections. The pathol-
ogy is mostly unknown and differs between patients. Unfortunately, cur-
rently there is no common and effective treatment. Limited data on the
prevalence and outcomes of unexplained PAIS make interpretation dif-
ficult. The absence of comprehensive, prospective studies with long-
term follow-ups, objective measures, and appropriate control groups,
along with small sample sizes, obscures case outcomes. Methodolog-
ical differences and varied symptom criteria further hinder compari-
son across studies, making it challenging to draw definitive conclusions
about prevalence accuracy and long-term prognosis. This data gap under-
mines foundational knowledge for designing clinical studies and assess-
ing interventions’ impact on post-infectious chronic disease and disability
management.

To develop a clinical scoring system for PAIS, multicenter studies in-
volving a larger patient cohort, inclusive of those who have not responded
to treatment, will be imperative. These studies will aim to correlate in-
dividual biomarkers with treatment outcomes. Specifically, multivariable
analysis will be essential for establishing a practical clinical scoring sys-
tem to monitor both short-term and long-term treatment efficacy. More-
over, a more comprehensive exploration of disease mechanisms underly-
ing Long-Covid and other PAIS could enhance or supplement the existing
panel of clinical biomarkers. Furthermore, in the future, modern artificial

intelligence-based technologies, particularly those employing machine
learning, will be ideally suited to tailor and define individualized treat-
ment protocols based on specific markers for various patient subgroups
afflicted with post-infectious syndromes.

In conclusion, a comprehensive approach is needed to address
global health disparities while also encouraging specialists to combine
well-established treatments with potentially lesser-known therapies to
achieve optimal results.
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