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Air pollution: an emerging risk factor for autism spectrum disorder
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The global surge in air pollution poses an increasingly concerning environmental risk factor for neurodevelopmental disorders, particularly
autism spectrum disorder (ASD). Recent epidemiological studies have revealed compelling associations between exposure to specific air
pollutants, including fine particulate matter (PM), nitrogen oxides (NO, NO2), sulfur dioxide (SO2) and ozone (O3), and increased ASD risk. While
the rising global ASD prevalence, now affecting 1%–1.5% of the population, partially reflects expanded diagnostic criteria and enhanced
screening, mounting evidence points to the critical role of gene–environment interactions in ASD etiology. Air pollutants can trigger multiple
pathogenic mechanisms, including neuroinflammation, oxidative/nitrosative stress, epigenetic modifications, and glutamatergic/GABAergic
neurotransmitter system disruption. The timing of exposure appears crucial, with heightened vulnerability during prenatal development and
early childhood when critical neurodevelopmental processes, such as neuronal migration, synaptogenesis, and myelination occur. Research
priorities should focus on how air pollutants affect brain development in genetically susceptible individuals, especially during pregnancy and
early childhood. Better ways are needed to identify individuals at the highest risk and develop practical protective measures. Given the rising
global pollution levels, this knowledge will help shape meaningful public health policies to protect future generations from environmental
factors that may contribute to ASD.

Brain Medicine (2024), 1–4; doi: https://doi.org/10.61373/bm024e.0115; Published online: 12 November 2024.

Keywords: Air pollution, autism spectrum disorder, nitric oxide, neuroinflammation, oxidative stress

Air Pollutants Associated with Autism Spectrum Disorder
Air pollution comprises particulate matter (PM), carbon monoxide (CO),
sulfur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3),
and volatile compounds. A study in the United States, Israel, and Taiwan
has shown that PM2.5 (airborne particles smaller than 2.5 μm in diame-
ter), NO, and NO2 are positively associated with the cause of autism (1).
The study has also shown that the effect of pollutants depends on the ex-
posure time for pregnant women or children of an early age.

One well-studied air pollutant is PM, including PM10 and PM2.5, the
latter of which is particularly hazardous. These particles can enter the res-
piratory system and the bloodstream. They can also cross the placenta
and affect the normal development of the fetal brain. Studies with PM10
have shown its high toxicity and ability to cause autism spectrum disorder
(ASD) in pregnant women. Meanwhile, PM2.5 showed even deeper pene-
tration and a more harmful effect during the preconception period, and it
also posed an increased risk of ASD in newborns (2).

“NO” is a common air pollutant produced mainly by vehicle emissions
and the combustion of fossil and industrial fuels. Exposure to NO and
its derivative NO2 during pregnancy and early childhood can disrupt nor-
mal brain development (1, 2). Recent breakthrough research has estab-
lished the first direct link between nitric oxide and ASD pathogenesis (3,
4). The timing of its exposure is crucial. Exposure to these pollutants dur-
ing pregnancy and early postnatal development poses a significant risk
of ASD since these periods are essential for brain development, includ-
ing neuronal migration and myelinization (5). Another hazardous factor is
ozone. O3 is a highly reactive oxygen gas. Ground-level O3 is produced by a
photochemical reaction between two significant classes of air pollutants:
volatile organic compounds and nitrogen oxides. The study by McGuinn
et al. has shown an association between O3, PM2.5, and ASD (6). It has
been found that O3 and PM2.5 exposure during pregnancy and two first
postnatal years has a strong association with the disorder (6).

Accumulated evidence has also revealed that SO2 is a significant air
pollutant produced by vehicles, the combustion of fossil fuels in power
plants, and other sources. Studies have shown that exposure to SO2
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during a maternal period and the first 4 years of age increases the risk
of ASD (7). Benzene is a volatile organic compound commonly found in
vehicle emissions, industrial processes, and tobacco smoke. Maternal ex-
posure to NO2 and benzene during pregnancy can also increase the risk
of ASD (8). Another study has shown that co-exposure to a few air pollu-
tants like PM2.5 and SO2 exert synergistic effects leading to neurodegen-
eration at low doses, including neuronal apoptosis, reduction of synaptic
structural protein postsynaptic density (PSD-95) and synaptic functional
protein N-methyl-D-aspartate (NMDA) receptor subunits (NR2B) (9).
Figure 1 depicts the potential links between air pollution and ASD.

Potential Mechanisms by Which Air Pollutants can Cause ASD
Neuroinflammation and Oxidative/Nitrosative Stress
Neuroinflammation is widely recognized as a key risk factor in neurologi-
cal disorders. During pregnancy, inhaled air pollutants like PM can induce
a systemic inflammatory response in the fetus and cause neuroinflamma-
tion in the developing brain. With the blood–brain barrier immature, PM
can directly enter the fetal brain, triggering inflammation in astrocytes
and microglia. This would release proinflammatory cytokines and acti-
vate key inflammatory pathways, such as JNK and nuclear factor-kappa B
(NF-κB) (10). Pollutants like NO2 and PM2.5 can stimulate toll-like re-
ceptors (TLRs), particularly TLR4, directly (11) or through oxidative stress
(12), inducing an immune response. This activation leads to downstream
signaling involving NF-κB, a critical transcription factor modulating nu-
merous inflammatory genes’ expression. Chronic activation of NF-κB re-
sults in sustained inflammation and has been linked to neurodevelop-
mental disruptions by altering the balance of pro- and anti-inflammatory
mediators in the brain (11). The mitogen-activated protein kinase (MAPK)
signaling pathway is also highly responsive to environmental stressors
like air pollutants. Exposure to PM2.5 can lead to the phosphorylation of
extracellular signal-regulated kinase, part of the MAPK pathway, which is
a crucial mediator of inflammation (13).

In the central nervous system, MAPK activation in microglia and as-
trocytes results in the secretion of proinflammatory cytokines like TNF-α
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Figure 1. Illustration of the link between air pollution and ASD.

and IL-6, contributing to neuroinflammation and likely altering synap-
tic plasticity in regions implicated in ASD, such as the prefrontal cor-
tex. These stresses can also imbalance the excitatory (glutamate) and in-
hibitory (gamma-aminobutyric acid [GABA]) neurotransmitter systems, a
common occurrence in ASD (4). Studies have shown that air pollution-
mediated oxidative stress has been linked to changes in neurotrans-
mitter levels. The levels of the key neurotransmitters of the reward
processing and motor function, dopamine and serotonin, can be dimin-
ished by air pollutants in the striatum (14) causing impairments of these
functions, characteristic of ASD. Additionally, air pollution exposure has
been tied to reductions in norepinephrine and dopamine in the pre-
frontal cortex, which may impair executive function and decision-making
abilities (14).

Prolonged neuroinflammation triggered by NO exposure has been
shown to influence the activity of brain regions involved in social and cog-
nitive functions, which are commonly impaired in ASD (4). Exogenous NO
and NO2 can increase the brain’s NO level, affecting the NO signaling path-
ways. Individuals with a genetic predisposition to ASD may be more vul-
nerable to the harmful effects of NO exposure. Thus, it has been found
that mutations of genes involved in the detoxification of oxidative stress
or regulating NO signaling may exacerbate the impact of environmental
factors like air pollution, contributing to the development of ASD in ge-
netically susceptible individuals (1).

Air pollution exposure during pregnancy can activate the mother’s im-
mune system, leading to inflammation and altered fetal brain develop-
ment. Elevated concentrations of inflammation-related cytokines in ma-
ternal serum in utero and children during their early life are associated
with worse neurodevelopmental outcomes (15). Maternal immune activa-
tion can lead to the release of different cytokines (e.g., IL-1b, IL-6, IL-10,
and TNF-α), altering brain connectivity and resulting in ASD-like behavior
in offspring (15, 16).

Epigenetic Modifications
Air pollution can cause epigenetic changes, such as DNA methylation and
histone modification, that alter gene expression. These modifications can
affect genes related to brain development and immune function, increas-
ing the risk of ASD (17).

Glutamatergic and GABAergic Systems
Air pollution has been shown to affect neurotransmitter systems, includ-
ing glutamate and GABA, which are crucial for neural signaling and synap-

tic plasticity (18). Studies have shown increased total frontal cortex glu-
tamate, glutamine, and GABA levels in both sexes after postnatal expo-
sure to air pollutants. They impact brain glutamate levels and affect de-
veloping and adult microglia with glutamate receptors, which can lead to
glutamate release upon microglial activation (18). This release, in turn,
activates microglia, creating a cycle that potentially drives chronic inflam-
mation (18). Imbalances in the glutamatergic and GABAergic systems are
commonly observed in individuals with ASD (4, 19). Air pollutants have
been shown to disrupt the normal formation and pruning of synapses
during early brain development, leading to altered brain circuits that are
associated with ASD symptoms (18).

Endocrine Disruption
Some air pollutants, like PM2.5 and PM10, act as endocrine disruptors,
affecting hormone levels critical for brain development (20). Disruptions
in hormones such as estrogen and thyroid hormones during critical peri-
ods of brain development can lead to neurodevelopmental abnormalities,
including ASD (20).

The Dysregulated Metabolic Pathways
Epidemiological studies have shown that air pollution exposure can cause
dysregulated metabolic pathways and increase the risk of ASD (21).
Metabolic disruptions in fatty acids, amino acids, neurotransmitters, and
microbiome processes have been associated with both short- and long-
term air pollution exposure, increasing the risk of ASD. Studying these
metabolic dysfunctions offers insights into ASD etiology related to air pol-
lution, particularly during the perinatal period when neurodevelopment
is highly vulnerable to oxidative stress and inflammation (21).

Biomarkers of Air Pollution with High Risk to ASD
Biomarkers could have held promise for early ASD prevention by identi-
fying individuals at high risk during prenatal or presymptomatic stages.
This would enable early intervention to address neurodevelopmental ab-
normalities or avoid environmental triggers like exposure to air pollu-
tants. To date, no studies have focused on biomarkers that specifically re-
flect the impact of the air pollutants that pose a risk of ASD (22). NO is
both an endogenous signaling neurotransmitter and a pollution-related
molecule. Dysregulation in NO signaling pathways has the potential to of-
fer early biomarkers for ASD risk related to air pollution exposure. One
such biomarker could be 3-nitrotyrosine, whose levels are increased in
the blood plasma of ASD children as a result of nitrosative stress (23, 24).
Changes in the blood balance of GABA and glutamate (19) and increased
levels of IL-6 (22), as discussed above, can also indicate an early response
to air pollution. Elevated expression of C-reactive protein during preg-
nancy appears to be significantly associated with neuroinflammation and
an increased ASD risk in the offspring (25). Another possible marker is mi-
cronuclei. They indicate the presence of initial (and reversible) alterations
in the chromosomal structure and oxidative damage to DNA caused by
air pollution (26). Identifying a specific biomarker or a group of biomark-
ers may offer early indicators of ASD risk due to pollution exposure.
The pathogenic mechanisms linking air pollutants to autism spectrum
disorder risk factors are summarized in Figure 2.

Future Perspectives
Numerous studies clearly show that air pollution plays a significant role
in ASD and should be considered among the emerging risk factors for
this disorder. Yet, the mechanisms underlying the involvement of these
factors in ASD pathogenesis are not fully understood (27–29). From this
viewpoint, the relationships between air pollutants and ASD warrant fur-
ther investigation. Since air pollution is a mixture of toxins, they have dif-
ferent biological effects on ASD development. Studying various air pol-
lutants’ cumulative/synergistic effects would be particularly interesting.
The impact of air pollutants on neurogenesis and neuron development
at different time windows is also essential. In the early prenatal stage
(first and second trimester), neural stem cells proliferate to form neu-
rons and glial cells. The mid-prenatal stage (second trimester) involves
neuronal migration, where neurons drift to their designated place and
form structures. Synaptogenesis occurs in late prenatal and early post-
natal neuron differentiation (30). Air pollutants can affect neuron devel-
opment, migration, differentiation, and synapse formation during these
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Figure 2. Molecular and cellular pathways linking air pollutants to ASD development. The diagram illustrates the complex cascade of biological events connect-
ing environmental air pollutants to ASD risk factors. Beginning with primary pollutants from industrial and vehicular sources (shown in very light sage), the
pathway traces how specific compounds including PM2.5/PM10, nitrogen oxides, sulfur dioxide, ozone, and benzene (highlighted in very light blue) influence
neurodevelopment during critical exposure windows. The windows, emphasized in sage green, encompass both prenatal development and early childhood pe-
riods (very light green), during which the developing brain is particularly vulnerable. The diagram then reveals the intricate pathogenic mechanisms (medium
light blue) triggered by these exposures, including neuroinflammation, oxidative/nitrosative stress, epigenetic modifications, excitation/inhibition imbalance,
and endocrine disruption (shown in light ochre). These mechanisms converge to induce molecular changes that manifest as increased inflammatory cytokines,
enhanced oxidative damage, DNA methylation alterations, and GABA/glutamate imbalance (depicted in soft pink). The bright yellow header emphasizes the pri-
mary air pollutants, while the soft orange endpoint highlights the culmination in ASD risk factors, creating a visual progression from environmental exposure to
neurobiological impact. The color-coded framework helps track the progression from external environmental factors through biological mechanisms to clinical
outcomes, emphasizing the multifaceted nature of pollution-induced neurodevelopmental disruption.

time windows. Air pollutants in postnatal or childhood periods can also
affect synaptic pruning, impair glial function, and cause neuroinflamma-
tion (10, 18).

Different confounding factors should be considered while studying
the link between air pollutants and ASD. These factors may include mi-
crobiome, nutrition, financial state, education level, social aspects, and
workplaces. Lifestyle factors, such as active and passive smoking in preg-
nancy, also need to be taken into account. They could be potent factors for
ASD pathogenesis. It is also essential to consider the place of residence
and socioeconomic position, as poorer neighborhoods are likely to expe-
rience more pollution, higher vulnerability to these factors, and a higher
risk of ASD (26). Avoiding exposure to the above-mentioned environmen-
tal risk factors could prevent a considerable number of ASD cases. Ulti-
mately, mitigating harmful environmental exposures, especially during
pregnancy, could play a crucial role in preventing nongenetic cases of ASD
and improving public health outcomes.
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