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Dynamic memory enqrams: Unveiling the celular mechanisms of memory encoding,
consolidation, generalizaton, and updating in the brain

Shuai-Wen Teng1,2, Xiao-Lin Chen1, and Zhe-Yu Chen1,2,3

One of the fundamental questions of neuroscience is how the brain can store, generalize, and update memories. Memories are believed to be
stored through biophysical and molecular changes in neuronal ensembles called engrams, which are distributed across different brain regions.
The dynamic changes that occur in engram cells during the encoding, consolidation, generalization, and updating of memory are still not fully
understood. However, recent advancements in techniques for labeling and manipulating neural activity have allowed for investigation of the
dynamic changes of memory engrams across different memory processes. Understanding engram dynamics may inform interventions for
posttraumatic stress disorder and memory disorders. In this review, we summarize the recent progress in dynamic memory engrams across
memory encoding, consolidation, generalization, and updating, shedding new light on the mechanisms underlying engram formation and
maturation.
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Introduction
One of the fundamental questions of neuroscience is how the brain can
store, generalize, and update memories. The search for the mechanistic
substrates of memory, what Richard Semon called the “engram” has con-
tinued into the present day. Hebb pioneered the idea of neuronal ensem-
bles, which is small populations of sparsely distributed neurons, are ac-
tive in response to a specific salient stimulus and the synaptic connections
between them are strengthened. The explosion of research that is begin-
ning to uncover the dynamic cellular and molecular mechanisms by which
memories are encoded, consolidated, and updated. Recent advancements
in techniques for labeling and manipulating neural activity have facili-
tated the study of engram cells throughout memory acquisition, retrieval,
generalization, and updating.

Engram Storage of Memory
Memory is a vital cognitive function, allowing organisms to encode, store,
and retrieve information. The concept of memory engrams, discrete phys-
ical traces that represent stored memories in the brain, dates back to
early theoretical models but has recently gained empirical traction with
modern neurobiological techniques. Recent advances in memory engram
technology, combining immediate early gene (IEG)-based tagging and
optogenetic manipulation, have enabled the identification and control
of neuronal ensembles encoding specific memories. Studies by Mayford
and Tonegawa demonstrated that reactivating tagged engram cells can
induce memory retrieval, even in novel contexts, while inhibiting these
cells impairs recall. These findings confirm that engrams are sparsely
distributed, functionally linked neuronal populations that undergo en-
during changes during learning and reactivate during retrieval. Engram
formation is driven by intrinsic excitability and CREB-mediated transcrip-
tional regulation, with hyperexcitable neurons preferentially recruited
into memory-encoding ensembles. During consolidation, synaptic stabi-
lization and systems-level reorganization transition memories from hip-
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pocampal to cortical storage, enabling long-term persistence. Retrieval
involves the reactivation of original encoding ensembles, with artificial
stimulation of engram cells bypassing natural cues to induce memory
recall. Collectively, these insights reveal engrams as dynamic, distributed
networks that encode, consolidate, and retrieve memories through co-
ordinated neural activity. This framework not only advances our under-
standing of memory mechanisms but also holds promise for addressing
memory-related disorders.

Defining the Engram: From Theoretical Abstraction to Biological Reality
The term engram raised by Richard Semon in 1904 as the “mnemic trace”
encoding memory which has evolved from a philosophical construct into
a cornerstone of modern neuroscience (1, 2). Despite its conceptual sim-
plicity, defining the engram with biological precision remains a challenge,
requiring integration across molecular, cellular, and systems-level per-
spectives. Semon’s original formulation posited the engram as a latent
neural modification persisting after learning, capable of being reacti-
vated to reproduce conscious memory. However, early 20th-century neu-
roscience lacked tools to empirically validate this idea. Karl Lashley, a
geneticist turned psychologist tried to find an engram but failed. In his
experiments, he trained the rat to learned maze memory task by giving
the reward. However, the size, but not the location, of lesion in cortex cor-
related with the memory deficits (3). After more than 30 years of search-
ing, Lashley concluded that memory is not localized to a particular brain
area (4).

As the next leap of engram, Hebb raised a concept that “neurons that
fire together, wire together” (5, 6). It was hypothesized by Hebb that a cell
assembly is formed through reciprocal connections between cells that are
simultaneously active during an experience. Furthermore, reactivation of
a subset of these assembly cells was proposed to trigger the reactivation
of the entire assembly.
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Despite these scientists have defined and described the engram, there
remains a paucity of studies investigating its biological basis. The growing
interest in engram research has been significantly driven by innovations in
memory engram technology, which facilitates the identification and con-
trolled modulation of neuronal ensembles encoding specific memories.
This methodology integrates IEG-based cellular identification with opto-
genetic control mechanisms. Neuronal activation during memory retrieval
is visualized through IEG immunohistochemical markers, while cells en-
gaged during initial encoding are selectively tagged via temporally regu-
lated IEG promoters that induce stable fluorescent reporter expression. A
brain region (or global network) is considered to harbor an engram when
the overlap between training-activated (tagged) and retrieval-activated
(IEG-expressing) neurons exceeds stochastic expectations. Mayford and
colleagues targeted amygdala neurons activated during auditory fear
conditioning—a behavioral paradigm where a neutral auditory cue (condi-
tioned stimulus, CS) becomes associated with an aversive footshock (un-
conditioned stimulus, US) (7). Posttraining re-exposure to either the CS
or context elicits freezing behavior in rodents, reflecting robust asso-
ciative memory. Their experimental design involved reintroducing mice
to the conditioning context 3 days posttraining, with zif268 immuno-
histochemistry identifying retrieval-activated neurons. Strikingly, the ob-
served overlap between tagged (training-active) and zif268+ (retrieval-
active) neuronal populations in the amygdala nucleus surpassed chance
levels, with ∼11% of sampled neurons exhibiting dual activation—a find-
ing consistent with the existence of an engram supporting this condi-
tioned fear memory. Comparable findings have been replicated across di-
verse neuroanatomical regions—such as the dorsal hippocampus (8–12),
amygdala (7, 9, 11, 13–15), and cortical areas (9, 14, 16, 17)—using varied
activity-dependent labeling techniques in multiple memory paradigms.
Collectively, these investigations corroborate the widespread existence
of engram-associated neuronal ensembles. Nevertheless, functional vali-
dation remains critical to confirm whether reactivated candidate engram
cells genuinely constitute the neural substrate of experiential memory.

Tonegawa and colleagues provide the first causal evidence through
a gain-of-function approach, tagging dentate gyrus (DG) neurons ac-
tivated during contextual fear conditioning (pairing a specific envi-
ronment with footshock) to express the light-sensitive cation channel
channelrhodopsin-2 (ChR2) via activity-dependent promoters (7, 18). In
a novel, nonconditioned context where mice exhibited no spontaneous
freezing, optogenetic stimulation of these labeled DG neurons elicited
robust freezing behavior—the learned adaptive response (10)—despite
the absence of prior aversive experiences in this setting. Crucially, this ef-
fect was memory-specific: photoactivation failed to induce freezing when
downstream CA1 neurons were silenced during initial training, thereby
blocking memory formation (19). Subsequent studies employing opto-
genetic or chemogenetic activation protocols demonstrated that in the
absence of natural sensory cues, targeted reactivation of engram cells
in various brain regions reliably evokes memory-associated behaviors
across multiple tasks (20–25). These findings align with Semon’s con-
cept of ecphory—the process by which latent engrams transition to ac-
tive memory states. Complementing these gain-of-function results, loss-
of-function experiments reveal that subsequent ablation or inhibition of
engram neurons consistently impairs memory retrieval, further solidify-
ing their necessity in mnemonic processes.

Together, engrams are sparsely distributed populations of neurons
that undergo enduring physical or chemical changes during learning from
different levels, thereby storing specific memory information (Figure 1).
Following memory consolidation, these cells are functionally linked
through strengthened synaptic connections and reactivate during mem-
ory retrieval. Critically, engram cells are not confined to a single brain
region but form interconnected engram complexes across the hip-
pocampus, amygdala, prefrontal cortex, and other circuits, depending on
memory type (e.g., episodic, emotional, or procedural).

Engram in Memory Encoding
The engram represents enduring neurobiological modifications induced
by learning experiences, which subsequently enable the retrieval of cor-
responding memories. Engram neurons are operationally defined as cel-

lular subpopulations selectively engaged in the encoding, consolidation,
and retrieval of specific mnemonic information.

A central question in memory research concerns the mechanisms
underlying selective neuronal recruitment during encoding. Emerging ev-
idence implicates cell-autonomous properties, particularly intrinsic ex-
citability (the propensity of neurons to generate action potentials in re-
sponse to synaptic input), as a critical determinant of engram allocation.
Neurons with elevated baseline excitability exhibit preferential activation
during learning and are disproportionately incorporated into memory-
encoding ensembles (26–28). This excitability bias aligns with obser-
vations that neurons overexpressing CREB—a transcriptional regulator
known to enhance both intrinsic excitability (29–31) and dendritic spine
density (30, 32)—are selectively recruited into engrams, whereas CREB-
deficient neurons are excluded from encoding processes (33–35). Notably,
transient CREB upregulation immediately prior to learning enhances
memory formation, demonstrating its capacity to regulate mnemonic al-
location on behaviorally relevant timescales (35).

The prevailing model posits that CREB-driven engram recruitment
operates via excitability modulation. Empirical support for this mech-
anism includes: Excitability Suppression: Pharmacogenetic inhibition
of CREB-overexpressing neurons abolishes their preferential engram
integration. Excitability Enhancement: Artificially increasing neuronal
excitability (independent of CREB manipulation) promotes engram
membership. These findings establish a direct causal link between cel-
lular excitability states and competitive engram allocation during mem-
ory encoding. While traditional models posit memory storage at the level
of individual neurons, contemporary frameworks emphasize encoding
through neuronal ensembles—functionally coordinated cell assemblies
that exhibit stimulus-, task-, or state-dependent synchronous activity. A
critical unresolved question centers on whether these ensembles merely
aggregate independent neurons or emerge from specialized intercellu-
lar relationships. Holographic optogenetic techniques, particularly two-
photon precision stimulation, have provided mechanistic insights into this
issue (36, 37). Repeated photostimulation of defined neuronal groups en-
hances their spontaneous coactivation probability, even in the absence
of external cues—a hallmark of ensemble formation (37). Strikingly, such
assemblies self-organize through cell-autonomous mechanisms: unex-
pected strong and persistent increased intrinsic excitability within stimu-
lated neurons showing their correlated activity, with an initial depression
followed by a potentiation after a recovery period in presynaptic plastic-
ity (38). These observations align with theoretical models proposing that
memory encoding involves the preferential recruitment of hyperexcitable
neurons into temporally coordinated activity patterns (39). Collectively,
these findings challenge synaptic plasticity-centric paradigms, suggest-
ing intrinsic excitability states—rather than synaptic rewiring—serve as
primary drivers of ensemble-level memory representation.

Engram in Memory Consolidation
Newly acquired memories are initially sustained by transient, experience-
dependent neuronal activation (26, 38, 40–43). However, such memories
remain labile and prone to rapid decay unless stabilized through subse-
quent molecular processes. The conversion of transient memory traces
into enduring forms necessitates transcriptional activation and de novo
protein synthesis. These molecular cascades drive synaptic stabilization,
characterized by strengthened connectivity among coactivated neuronal
ensembles engaged during encoding (44, 45). Crucially, interventions
disrupting these molecular pathways—termed synaptic consolidation—
abrogate long-term memory persistence. Pharmacological or genetic
disruption of these pathways blocks the transition to long-term mem-
ory storage (29, 46). For instance, inhibition of CREB-mediated tran-
scriptional activation—a key regulator of synaptic plasticity—impairs
mnemonic persistence (30, 45). Similarly, postlearning administration
of protein synthesis antagonists abolishes long-term memory formation
(44, 45). Thus, synaptic stabilization constitutes a pivotal bottleneck:
memories undergoing this process attain persistence and future retriev-
ability, whereas unstabilized traces are subject to decay.

Long-term hippocampal memory formation is enhanced through
repeated behavioral or internal reactivation of the learning event.
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Figure 1. Hierarchical organization and dynamic states of fear engrams. (A–E) Multiscale engram representations: (A) Nuclear level of epigenetic/transcriptional
remodeling; (B) Synaptic level change of neurotransmitter release; (C) Cell level of neuronal connectivity reconfiguration and plasticity change; (D) Regional
ensemble coactivation; (E) Network-level engagement (blue = learning activation); (F) Mnemonic state transitions: Engrams (highlighted in dark blue) emerge
through activity-dependent synchronization of neuronal ensembles during contextual fear memory acquisition (encoding). During subsequent consolidation
processes, these engrams undergo gradual transition into a dormant state characterized by stabilized synaptic connectivity. Notably, memory retrieval triggers
transient reactivation of consolidated engrams, temporarily destabilizing their established neural activity patterns while simultaneously manifesting as context-
specific freezing behavior. Crucially, this reactivation phase initiates reconsolidation mechanisms that restabilize modified engram configurations, ultimately
restoring them to a quiescent storage state with updated mnemonic information. HPC, hippocampus; LA, lateral amygdala; mPFC, medial prefrontal cortex.

Notably, such reactivation occurs not only during active engagement
but also during offline states (e.g., sleep or quiet wakefulness), where
spontaneous replay of activity patterns emerges among recently acti-
vated hippocampal neurons. These replay events are temporally coupled
to sharp-wave ripples (SWRs)—high-frequency network oscillations—
and critically facilitate memory stabilization. Experimental interventions
demonstrate that optogenetic reactivation of lateral amygdala engram
cells during fear conditioning consolidation enhances subsequent mem-
ory robustness (24), with analogous findings observed in the retrosple-
nial cortex (47). Furthermore, fear memory engram neurons exhibit sleep-
preferential reactivation, and suppressing their activity during sleep (but
not wakefulness) abolishes consolidation (48–50), underscoring the role
of endogenous replay in memory reinforcement.

Following initial synaptic stabilization, memories undergo system
consolidation, transitioning from hippocampal dependence to medial
prefrontal cortex (mPFC)-dependent storage over days to years. This pro-
cess, termed systems consolidation, allows coexistence of hippocampal
and mPFC engrams representing the same experience (51, 52). How-
ever, memory phenomenology diverges based on activated ensembles:

hippocampal engrams retain episodic, context-specific details, whereas
mPFC ensembles encode schematic, generalized representations post-
consolidation (52–56). Mechanistically, mPFC-dependent consolidation
unfolds over weeks, marked by delayed structural plasticity: dendritic
spine density increases and strengthened engram-to-engram connectiv-
ity emerge weeks postencoding (11, 57). A prevailing model posits that
hippocampal indexing—where hippocampal SWRs reactivate neocortical
activity patterns from initial encoding—drives mPFC maturation (36,
58). According to this framework, repeated hippocampal-mPFC replay
during sleep promotes neocortical stabilization, ultimately enabling
hippocampus-independent recall. Disrupting hippocampal engram ac-
tivity during this critical window prevents mPFC plasticity (e.g., spine
remodeling, synaptic strengthening) and retrieval-related reactivation
(11, 57, 59, 60), validating the hippocampus’s instructive role in systems
consolidation.

Engram in Memory Retrieval
Once an engram has been consolidated and stored, it can be activated
to induce memory retrieval. Consolidated engrams mediate memory
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retrieval, a process governed by the similarity between retrieval cues
and the original encoding context. Successful retrieval recapitulates neu-
ral activity patterns present during encoding. Seminal studies employ-
ing Arc RNA catFISH revealed that contextual memory retrieval prefer-
entially reactivates hippocampal CA1 neurons active during initial encod-
ing (61). Subsequent work in TetTag mice demonstrated that fear mem-
ory retrieval reactivates basolateral amygdala (BLA) engram cells, with
reactivation rates predicting memory strength (7). These findings estab-
lished that retrieval engages original encoding ensembles—a principle
replicated across diverse paradigms and brain regions (12, 57, 62).

Crucially, engram neurons are necessary for retrieval. Pretraining am-
plification of excitability in select lateral amygdala or hippocampal neu-
rons enables memory allocation to these cells. Their targeted ablation
(34) or inhibition (63–65) disrupts specific memory retrieval without im-
pairing new learning, a phenomenon generalizable across DG, CA1, insular
cortex, nucleus accumbens, and mPFC (8, 11, 16, 33, 66). Artificial engram
reactivation bypasses natural cues to induce memory retrieval (10, 19, 67–
69). Multiregional co-activation enhances retrieval efficacy compared to
single-region stimulation (69), replicating across fear conditioning, place
preference, and social memory tasks (6, 22, 36, 70, 71). Retrieval itself
transiently boosts engram excitability via Kir2.1 channel modulation, im-
proving behavioral discrimination and pattern separation (72). Notably,
minimal stimulation suffices: activating two visual cortex engram neurons
drives ensemble-wide pattern completion and memory retrieval (37).
Hippocampal engram stimulation further recruits downstream amygdala
and cortical ensembles (59, 73), illustrating system-level coordination.
This capacity for activity pattern completion from sparse inputs underlies
artificial engram-driven retrieval.

Engram and Memory Generalization
Fear overgeneralization represents a maladaptive behavioral response
to nonthreatening stimuli or neutral environments. This phenomenon, a
hallmark feature of anxiety spectrum disorders such as generalized anx-
iety disorder, panic disorder, and posttraumatic stress disorder (PTSD)
(74, 75), demonstrates significant clinical relevance. This section synthe-
sizes current understanding of hippocampal and extrahippocampal en-
gram contributions to fear generalization, with particular emphasis on
neural circuit mechanisms driving this pathological memory process.

Hippocampal Engrams and Fear Generalization
Engram cells within the dorsal dentate gyrus (dDG) critically support
memory precision through pattern separation—a computational process
essential for discriminative memory retrieval (76, 77). The temporal
degradation of memory specificity correlates with dynamic hippocampal-
cortical network reorganization during systems consolidation (78).
Hippocampus plays an important role in maintaining the specificity
of memories over time through the hippocampal–cortical interactions
that underlie memory consolidation (79, 80). Recent mechanistic stud-
ies reveal DG circuit regulation of memory precision: (1) DG-CA3 con-
nectivity via stratum lucidum inhibitory interneurons (SLINs) modulates
recent memory specificity (81); (2) Mossy fiber terminal filopodia con-
tacting SLINs mediate feedforward CA3 inhibition (82, 83); (3) DG-driven
inhibitory control shapes CA3 activation patterns and memory preci-
sion (81, 84). Notably, the actin-binding protein ABLIM3 emerges as a
learning-sensitive regulator of DG-SLIN connectivity. ABLIM3 downreg-
ulation enhances context-specific engram reactivation in hippocampal-
cortical networks while reducing remote fear generalization (85),
positioning it as a molecular brake on memory specificity.

Neuronal competition analyses demonstrate that generalized fear
expression in novel contexts arises from fear engram dominance over
non-engram dDG populations. Complementary findings reveal ventral DG
mossy cell (vMC) suppression correlates with context-generalized fear,
while vMC-dDG pathway activation selectively attenuates generalized
fear responses without affecting conditioned fear (86).

Stress constitutes a homeostatic challenge critically involved in PTSD
pathogenesis and fear memory generalization (87). Stress exposure dur-
ing memory encoding/processing induces maladaptive fear generaliza-
tion characterized by context-inappropriate memory expression (88).
Stressors activate the hypothalamic-pituitary-adrenal axis, triggering

adrenal glucocorticoid release that potentiates memory generalization
(89, 90). Engram formation follows sparse encoding principles, prefer-
entially recruiting hyperexcitable principal neurons while suppressing in-
corporation of less responsive cells (65, 91). Through activity-dependent
TetTag labeling of footshock-activated ventral CA1 neurons, researchers
demonstrated that chronic aversive engram activation drives fear gen-
eralization, directly linking stress exposure to maladaptive memory
expression (92). Postconditioning glucocorticoid elevation induces con-
textual fear generalization, correlating with enhanced excitability and
expansion of DG engram populations. Notably, chemogenetic silencing
of these activated DG engrams blocks stress hormone–mediated gener-
alization (93). Engram expansion occurs through training-phase disrup-
tion of inhibitory networks, particularly parvalbumin-positive (PV+) in-
terneurons (94). Targeted PV+ interneuron suppression in dorsal CA1
during threat conditioning produces hyperdense engrams and general-
ized fear memories (95). These findings support a mechanistic framework
where stress-induced PV+ dysregulation alters engram/non-engram
competitive dynamics, potentially enabling context-independent fear
retrieval.

Engrams in Other Brain Areas and Memory Generalization
Emerging evidence suggests that stress-mediated corticosterone
signaling enhances fear engram ensemble density within the lateral
amygdala, thereby promoting fear generalization (96). Mechanistic
investigations revealed that pharmacological interventions targeting
glucocorticoid receptors (antagonists) and endocannabinoid systems
(synthesis inhibitors), combined with neuromodulatory approaches
enhancing PV+ neuronal activity or suppressing cannabinoid receptor
expression in lateral amygdala PV+ neurons, effectively restored threat
memory specificity and normalized engram sparsity in stressed mice.
These findings establish a critical retrograde signaling mechanism
through which endocannabinoids modulate PV+ interneuron activity to
mediate stress-induced memory generalization (96).

Current theoretical frameworks propose three potential mecha-
nisms for memory generalization: (1) encoding-phase modifications, (2)
retrieval-phase manifestations, and (3) temporally dynamic recruitment
of distinct neural networks (97, 98). Recent advances in neuronal tagging
technology, particularly the scFLARE2 system (single-chain fast light- and
activity-regulated expression 2), have enabled precise temporal tracking
of amygdala neuronal ensembles during threat conditioning. These stud-
ies demonstrate that temporally proximate threat experiences become
neurobiologically linked through coallocation to overlapping engram
ensembles, establishing this as a fundamental mechanism of memory
generalization (99).

The neural substrates of memory generalization extend beyond
canonical hippocampal-amygdala circuits. The retrosplenial cortex (RSC)
demonstrates multimodal involvement in cognitive processes ranging
from spatial navigation (58) to prospective cognition (100) and con-
textual memory retrieval (101). Postacquisition reactivation of memory
engrams facilitates neocortical ensemble maturation through activity-
dependent synaptic plasticity, a critical process in systems consolida-
tion (11). Notably, high-frequency stimulation of RSC engrams 24 hours
postlearning induces fear generalization and shifts recent memory re-
trieval dominance to the anterior cingulate cortex (ACC), bypassing hip-
pocampal involvement (47). This neural reorganization exhibits state-
dependent specificity, occurring exclusively during offline brain states
(sleep/anesthesia) rather than active wakefulness (47). Complementary
findings reveal regulatory mechanisms in prefrontal circuitry. Chemo-
genetic silencing of infralimbic (IL) cortical ensembles established dur-
ing learning exacerbates generalization, whereas their activation en-
hances memory specificity, indicating IL-mediated inhibitory control over
fear generalization (102). Furthermore, molecular investigations iden-
tify insulin-like growth factor 2 receptors (IGF-2R) in auditory cortex
layer 2/3 as critical modulators of engram precision. Reduced IGF-2R ex-
pression correlates with fear generalization, while exogenous IGF-2 ad-
ministration directly into auditory cortex preserves remote fear mem-
ory specificity, suggesting IGF-2 signaling maintains engram fidelity
over time (103).
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Figure 2. Engram competition in memory updating. During memory consolidation processes, engrams initially encoded by event 1 (blue) maintain a state of
heightened excitability and p-CREB level relative to adjacent neuronal populations for ∼6 h postencoding. When a similar event 2 (pink) occurs within this
temporal window, the hyperexcitable event 1 engram neurons demonstrate preferential recruitment during event 2 encoding, resulting in overlapping engram
(purple) formation and subsequent memory trace updating from event 1 to event 2. Following extended temporal intervals (24 h), event 1 engrams undergo
intrinsic excitability reduction. Subsequent event 2 encoding under these conditions engages a novel population of hyperexcitable neurons achieve preferential
recruitment for event 2 engram formation. This temporal-dependent segregation of memory traces enables memory updating.

Engram and Memory Updating
Memory updating is a fundamental process that allows organisms to
adapt to new information, modify existing knowledge, and integrate
novel experiences with pre-existing memories. Memory linking is one of
the most extensively studied examples of memory updating in current re-
search. The neural representation of memories, or engrams, is central to
this process. Recent advances in neuroscience have shown that memory
engrams are not static but are instead malleable, subject to modification
or updating through mechanisms such as reconsolidation, synaptic plas-
ticity, and cellular reorganization. In this section, we summarize the dy-
namic engram overlap in memory updating and how to switch the valence
of engrams.

Engram Overlap in Memory Updating
The hypothesis that overlapping neuronal ensembles mediate memory
traces originated from Pavlovian conditioning paradigms, wherein ani-
mals learn to link a CS (e.g., tone/light) with an US (e.g., shock/food) to
elicit conditioned responses (e.g., freezing) (104). While not strictly re-
flecting memory linkage, this process necessitates stimulus association
(Figure 2).

Early work visualized CS–US convergence using Arc—an IEG dynami-
cally redistributed between nucleus (0–5 min postactivation) and cyto-
plasm (5–30 min) (61). By temporally separating CS/US presentations
by ∼25 min, amygdalar neurons coactivated during associative learning
were identified (105–107), with their convergence proving essential for
taste memory formation (108). However, these static snapshots lacked
temporal resolution to resolve ensemble dynamics during association.
To address this, subsequent studies employed in vivo real-time calcium
imaging in freely behaving mice to record ensemble activity during the
presentation of the CS and US, as well as during the following periods.
One study demonstrated that the neuronal ensemble in the amygdala re-

sponding to the CS changed to resemble that of the US after success-
ful association, suggesting cross-talk between subensembles of the same
memory (109). A second study revealed another form of neuronal cross-
talk in the hippocampal area CA1 (110). During the presentation of the
CS and US, their respective ensembles responded independently to each
input. However, after the presentation of both stimuli, a phase of net-
work reverberation occurred, during which the two ensembles exhibited
synchronized activity, facilitating the successful CS–US association. This
finding indicates that, in addition to cellular overlap, a temporal overlap
in the activity of distinct ensembles may also link different aspects of a
memory.

Signals related to the CS and US converge on the same neurons within
seconds or minutes to generate associations within a single episodic
memory. Similarly, studies have demonstrated that different memories,
encoded hours apart, may (under specific conditions) be stored within the
same neuronal population, facilitating memory linking. One study illus-
trated how neuronal coallocation, defined as overlap between neuronal
ensembles, can naturally link contextual memories encoded in close tem-
poral proximity within the hippocampus (111). In this study, mice exposed
to two different contexts within a short temporal window (5 h) showed
that the memories of these contexts were linked. Specifically, a foot shock
in one chamber caused the mice to freeze significantly in the other cham-
ber. This response was not merely due to generalization, as the mice were
able to distinguish between the two linked contexts and a neutral con-
text that had never been associated with the prior two, demonstrating
that the memory linkage was specific and the identity of each memory was
preserved. Calcium imaging and engram labeling, using genetic and im-
munohistochemical techniques, revealed a higher degree of overlap be-
tween the active ensembles encoding each context when the memories
were linked, as compared to when they were separated by a longer tem-
poral window, in which case no linkage occurred. A similar study, using
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Figure 3. Neuronal activity–dependent tools for labeling, manipulating, and recording neurons. (A–D) Diagram of activity-dependent tools for neuronal labeling
and manipulating, TetTag (A); TRAP (targeted recombination in active populations (B); FLARE (Fast Light and Activity-Regulated Expression system) (C); (D)
Diagram of GCaMP-based calcium imaging technology.

auditory fear conditioning (AFC) with two separate tones, showed compa-
rable coallocation and memory linking in the mouse amygdala when the
tones were presented in close temporal proximity (65). This research fur-
ther demonstrated that engram overlap and memory linking can also be
induced by the mere recall (rather than initial learning) of an event shortly
before the encoding of a second memory. In addition to linking memories
of the same type, there are also reports of linking between different types
of memories. It has been reported that two amygdala-dependent emo-
tional memories—conditioned taste aversion (CTA) and AFC—were linked
through repeated coretrieval sessions (112). This linkage was demon-
strated by the observation that mice froze (the behavioral response to
AFC) upon receiving saccharin, the conditioned taste aversion stimulus.
Labeling and optogenetically inhibiting the overlapping ensemble shared
between both paradigms preserved both memories but disrupted the link
between them. This finding illustrates that memories can be specifically
linked without altering the individual memories, providing valuable in-
sights into the content encoded within the overlapping engrams. Memo-
ries to be linked across long periods such as days are poorly understood.
A recent study found that two memory ensembles separated two days
apart is overlapped during the offline period after learning (113), which
suggested that offline periods after learning may be important for mem-
ory integration as well. In addition, ensembles coreactivation occurs more
during wake than during sleep.

Above researches have primarily focused on memory linking through
engram manipulation without altering the original memory engrams.
While this approach constitutes a form of memory updating, real-world
memory updating often involves modifications to memory content—such
as the transformation of a positive memory into a negative one. A crit-
ical unanswered question remains: does engram overlap occur during
such content-modifying memory updating processes? A previous study
reported that the original memory engram of fear contributes to re-

mote fear attenuation via high overlap with extinction ensembles which
have been reported distinct with fear ensembles in the fear extinc-
tion paradigm (114). However, these prior investigations relied on IEG-
dependent tagging approaches, which lack the temporal resolution to
resolve dynamic engram interactions during active behavioral states.
The development and application of genetically encoded calcium indi-
cators (GECIs) have established the monitoring of cytosolic calcium ion
concentration dynamics as a prominent methodology for real-time de-
tection of neuronal activity (Figure 3) (115). In addition to monitoring
neuronal activity, FLARE, developed from GECI, enables high temporal res-
olution labeling and manipulation of neurons by using 10 min of blue
light stimulation to drive the specific expression of any target protein
(116). Nonetheless, due to the inherent limitations of optogenetics, the
potential for artificial effects remains an inherent drawback of both opto-
genetic and chemogenetic approaches. Furthermore, while hippocampal
engram overlap has been characterized, the existence and mechanisms
of engram overlap in prefrontal circuits remained unexplored. Our lab
was the first to identify a high overlap between fear and extinction en-
grams during a postretrieval paradigm, using in vivo calcium imaging at
the single-cell level in the prefrontal cortex (PrL) (23). Fear extinction
memory has been previously reported as a newly formed reward memory
(23). These findings support the concept of engram overlap in memory
updating, suggesting that memory updating is mediated by the rewriting
of the original memory trace through significant engram overlap.

Switch of Valence Associated with Engram
Engram overlap has been observed in various memory updating scenar-
ios, and experiments manipulating engrams have shown that the infor-
mation encoded in the original engram can be either enhanced or at-
tenuated. However, it remains unclear whether the value encoded by the
original engram can undergo a revise. The reactivation of engram cells
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by natural cue, or optogenetic manipulation could be a prerequisite for
memory malleability to integrate the new information outside the orig-
inal memory trace and orchestrated to constitute an updated memory.
It has been reported that the valence associated with the hippocampal
DG memory engram could be bidirectionally reversed (22); however, the
BLA engrams were not able to reverse the valence of the memory. Con-
sistent with this report, our previous study found that the reactivation
of BLA engram cells is not sufficient for the memory valence updating;
however, US stimulus, which triggers a more generalized BLA activation,
could induce the BLA engram encoding updating (23). While we demon-
strated that memory updating is specific to learning-associated memory
encoding as the valence of innate fear engrams (shock labeled) was un-
changed. In addition, the valence associated with engram in PrL could also
be revised by increased overlap with another engram which encode oppo-
site valence (23). Only a part of original engram showed increased activity
during memory updating, suggesting that a part of cell activation pattern
alteration might be sufficient for switching the function of original en-
gram.

What is the underlying mechanism through which engrams contribute
to memory updating? As proposed by Morris and colleagues (117), the
modification of synaptic connection patterns, mediated by synaptic plas-
ticity, is the fundamental mechanism by which the brain stores memory.
Using synaptic optoprobe techniques, Kasai and colleagues demonstrated
that acquired motor learning was disrupted by optical shrinkage of po-
tentiated spines, but this manipulation had no effect on spines activated
by a distinct motor task in the same cortical region (118). This suggests
that acquired motor memory depends on the formation of a task-specific,
dense synaptic ensemble. Furthermore, optogenetic manipulation of
synaptic plasticity specific to one memory was shown to affect the recall
of only that memory, without altering a linked fear memory encoded in
the shared ensemble (25), indicating that synapse-specific connectivity
of engram cells preserves the identity and storage of individual memories.
Additionally, using the dual-eGRASP (GFP reconstitution across synaptic
partners) technique, it was reported that fear conditioning enhanced con-
nectivity and increased spine morphology between engram cells, while
extinction weakened the connectivity between these cells. We hypothe-
size that memory information is stored in the specific pattern of connec-
tions among engram cells, and that memory updating may alter the orig-
inal engram encoding by modifying its connections with other engrams.

Dynamic of Engram Cells Maturation
Memory formation involves experience-responsive neuronal ensembles
that constitute both the necessary and sufficient substrate for recall. A
fundamental question in neurobiology concerns the temporal progres-
sion of engram states following initial encoding. Current models pro-
pose that engrams undergo molecular and circuit-level refinement dur-
ing consolidation, with encoding-activated cells playing essential roles in
successful retrieval (6). Notably, prefrontal circuitry demonstrates time-
dependent functional specialization in memory processing. Chemoge-
netic silencing experiments reveal that mPFC engram cells activated dur-
ing acquisition become indispensable for remote memory recall (typically
2–4 weeks postencoding), yet remain nonessential for recent memory re-
trieval. Intriguingly, these mPFC ensembles exhibit natural cue-induced
reactivation specifically during remote timepoints, suggesting their pro-
gressive integration into cortical memory networks (11). Conversely, hip-
pocampal engram cells display inverse temporal dynamics. Calcium imag-
ing studies demonstrate complete absence of natural cue reactivation
in CA1 engram populations 15 days postconditioned fear consolidation
(CFC) (11, 119). Longitudinal monitoring of synaptic reorganization in
hippocampal pyramidal neurons revealed rapid turnover of basal den-
dritic spines, with learning-associated connectivity patterns dissipating
within 15 days postacquisition (11, 119). This synaptic reorganization
was corroborated by quantitative analysis demonstrating 38.7% reduc-
tion in dendritic spine density within DG engram cells at 14 days post-
training (11). These complementary observations collectively demon-
strate bidirectional engram state transitions: Cortical engrams transition
from latent to functionally dominant states across a ∼2-week consolida-
tion window. Hippocampal engrams paradoxically maintain stable synap-

tic connectivity during recent memory phases but undergo progressive
functional silencing (Figure 4).

Transcriptional and Epigenetic Mechanisms Underlying the Dynamic
Change in Engrams
Emerging evidence reveals that dynamic transformations in memory
engram cells are governed by multifaceted molecular and epigenetic
mechanisms. Chromatin plasticity emerges as a critical regulator, with
enhanced nuclear flexibility increasing neuronal excitability to prime
cellular recruitment into engram networks (120). Longitudinal analy-
ses further demonstrate experience-dependent chromatin reorganiza-
tion during memory formation and retrieval phases, suggesting structural
genomic adaptations underlie engram functionality (121). DNA methy-
lation patterns exhibit spatiotemporal specificity in memory process-
ing. Cortical hypermethylation persists in the mPFC following CFC, with
pharmacological inhibition of methyltransferases at remote timepoints
impairing retrieval—a mechanistic demonstration of epigenetic main-
tenance of long-term memories (122). The differential DNA methyla-
tion alternations in hippocampus and mPFC at 1 h and 4 weeks after
CFC correlates strongly with the dynamic temporal spatial location of
associative memory (123), which could alter the expression and splicing
of genes involved in functional plasticity and synaptic wiring. Increased
DNA 5-hydroxy methylation levels have also been reported in mPFC for re-
mote contextual fear memories (124). Using neuronal activity-dependent
promoter to drive de novo DNA methyltransferase 3a2 (Dnmt3a2) overex-
pression within DG memory engram cells specifically during consolidation
was sufficient to strengthen contextual fear memory, which suggests DNA
methylation selectively within memory engrams as a mechanism of sta-
bilizing engrams during consolidation that supports successful memory
retrieval (125).

Histone modification during learning has also been shown to be im-
portant for the memory dynamic. The increases in histone H3 acetyla-
tion in the orbitofrontal cortex (OFC) were observed after social trans-
mission of food preference learning, and interference with this cascade
during the early postacquisition period could bidirectionally regulate re-
mote memory retrieval (126). Histone H2A.Z, a variant of histone H2A, is
actively exchanged in response to fear conditioning in the hippocampus
and the mPFC, where it mediates gene expression and restrains the forma-
tion of recent and remote memory (127). How does synaptic transmission
trigger transcriptional changes in engram cells to contribute to memory
consolidation? DG engram neurons exhibit prominent CREB-dependent
transcription features which are required for recent CFC memory consoli-
dation (128). CREB-mediated transcription in mPFC engram cells has been
reported to be required for remote memory consolidation (129).

Neuronal Excitability and Engram Dynamic
Neuronal excitability is an intrinsic property that determines the thresh-
old for spike generation and regulates signal transmission (130). Studies
have shown that neurons with inherently higher excitability during mem-
ory encoding are more likely to become part of the engram (28, 64). Patch-
clamp recordings have revealed that synapses connecting hippocampal
engram cells are selectively strengthened compared to those linking non-
engram cells, as evidenced by increased excitatory postsynaptic current
amplitude, enhanced spontaneous excitatory postsynaptic current ampli-
tude, and an elevated AMPA-to-NMDA receptor ratio (19). Moreover, DG
engram cells exhibit a transient increase in excitability following memory
reactivation, a phenomenon mediated by NMDA receptor activation and
a subsequent cascade leading to the downregulation of Kir2.1 channels
(72). This rapid yet temporary modulation enhances the precision and ef-
ficacy of subsequent memory retrieval (72). In the context of social asso-
ciative olfactory memory, the reorganization of GluN2B-containing NMDA
receptors acts as a critical tuning mechanism, determining the fate and
malleability of cortical memory engrams (131).

Dynamic maturation of memory engrams also depends on neuronal
circuit activity. It has been demonstrated that the maturation of mPFC
engram cells requires postlearning input from hippocampal engram cells
(11). For example, chronic inhibition of hippocampal DG engram cell out-
put via selective tetanus toxin (TeTX) expression initiated one-day post-
training abolished the reactivation of mPFC engram cells during remote
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Figure 4. Dynamic mechanisms of engram maturation. During the allocation, engram allocation is primarily governed by enhancements in intrinsic neuronal
excitability, driven primarily by increased phosphorylation of CREB, which primes these cells for selective recruitment. Following allocation, engram formation
is molecularly marked by the expression of IEGs including Fos, Npas4, Arc, and Egr1. The consolidation phase is characterized by epigenetic reprogramming,
such as DNA methylation, histone posttranslational modifications (e.g., acetylation, phosphorylation), and histone variant exchange. Concurrently, neuronal
excitability is further modulated through synaptic recruitment of NMDA receptors, AMPA receptors, and inwardly rectifying potassium channels (Kir), while
dendritic spine density increases to reinforce synaptic connectivity. Throughout this maturation process, engrams transition from a silent state to a functionally
mature configuration, marked by enduring structural and molecular adaptations that support long-term memory storage.

exposure to a conditioned context and prevented the associated increase
in dendritic spine density observed in control subjects. Furthermore,
pharmacologically silencing hippocampal activity during early phases im-
paired remote social transmission of food preference (STFP) memory,
stored in the OFC, indicating that early hippocampal activity is crucial for
the subsequent maturation and stabilization of mnemonic traces (126).
Disruption of hippocampal engram activity during recent recall at remote
timepoints, or interference with CA1-to-ACC projections postlearning, im-
pairs remote CFC memory, suggesting that functional connectivity be-
tween engrams is vital for their maturation during the transition from
recent to remote memory (132). Additionally, overexpression of hip-
pocampal Dnmt3a2 promotes the transfer of fear memory traces from
the hippocampus to the cortex and facilitates the maturation of mPFC
engrams, further supporting the role of DNA methylation–mediated hip-
pocampal activity in cortical memory engram maturation (133). Finally,
the consolidation of remote contextual fear memories has been linked
to progressive strengthening of excitatory connections between PFC en-
gram neurons active during learning, a plasticity process that is CREB-
dependent and relies on sustained hippocampal signals (57).

Dynamic Components of Engrams
Several questions remain regarding the dynamic changes in engram cells.
Engram neurons are typically defined as those activated during both
memory encoding and retrieval. One common method for identifying ac-
tivated neurons involves detecting the expression of IEGs such as Fos,
Npas4, Arc, and Egr1, which serve as markers of neuronal activity (134).
Notably, functional heterogeneity within memory engrams can be delin-
eated by the differential expression of these IEGs. For instance, it has been
reported that the Fos ensemble promotes the generalization of contex-
tual fear memory, whereas the Npas4 ensemble is essential for its dis-
crimination (135). Furthermore, developmentally distinct subpopulations
of hippocampal neurons are differentially recruited into memory traces
over time. Specifically, late-born neurons are preferentially recruited for
retrieval shortly after CFC acquisition, while early-born neurons become
more prominent at later stages (136). This divergent recruitment under-
lies the gradual reorganization of memory ensembles, thereby influenc-
ing memory persistence and plasticity. Computational models using spik-
ing neural networks have revealed that neurons can both drop out of and
join engrams during memory consolidation, with inhibitory synaptic plas-

ticity playing a critical role in refining engram selectivity (137). In addi-
tion, long-term potentiation (LTP), an activity-dependent and sustained
increase in synaptic strength, is suspected to contribute to engram mat-
uration via LTP-like mechanisms. Notably, inducing optical LTP shortly af-
ter fear conditioning has been shown to preferentially enhance memory
encoding (42, 138). Moreover, the use of dual-enhanced green fluores-
cent protein reconstitution across synaptic partners (dual-eGRASP) has
allowed researchers to monitor synaptic dynamics, revealing that changes
at CA3-to-CA1 engram synapses are key modulators during fear memory
states (139, 140). Despite these advances, how functionally distinct mem-
ory engrams are defined within a memory trace and how they dynamically
evolve during consolidation and updating remain open questions. Numer-
ous studies have demonstrated that reactivation of memory engrams dur-
ing offline periods following learning is critical for both memory consoli-
dation and updating (113, 141). For example, after a fearful event, mem-
ory encoding ensembles are reactivated and strengthened during post-
conditioning sleep, and disrupting this engram reactivation during sleep
impairs the consolidation of fear memory (49, 142). The intrinsic mecha-
nisms driving offline engram activation warrant further investigation.

Questions to be Answered
The study of dynamic change of engrams across different memory pro-
cesses such as encoding, consolidation, generalization, and updating
has significantly contributed to our understanding of memory. However,
there are still numerous fundamental questions that remain unanswered.
For example, we now know that memory engrams undergo epigenetic
changes related to their activation state during learning, which will sub-
sequently influence both immediate and long-term transcriptional re-
sponses. However, there are significant gaps in our understanding of the
crucial steps that connect these nuclear changes to the reinforcement
of specific synaptic connections. Furthermore, across different memory
processes such as consolidation, retrieval, generalization, and updating,
mechanisms that drive neurons drop out of and drop into engrams net-
work to modify our memory remains unknown. The neural ensemble flu-
idity in engram composition confers our memory stability and flexibil-
ity, which mechanism need further investigation. Finally, our knowledge
of the intrinsic mechanism underlying the offline activation of memory
engrams in an unconscious state is totally lacking, which might shed
light on the understanding of our memory representations drift over time
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depend on our experience and internal states. The ongoing develop-
ment and optimization of new technologies for studying engram cells
hold great promise for addressing these fundamental questions, which
have the potential to revolutionize our understanding and treatment of
memory-related disorders.
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