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Glioblastoma (GBM) represents the foremost prevalent and aggres-
sive form of primary brain tumor, characterized by high morbidity and
mortality rates. Nitric oxide (NO) has been shown to have diverse ef-
fects on various cancers, including GBM. Our previous study has shown
NO synthase (NOS) hyperactivation in GBM cell lines. GBM cell sur-
vival was reversed by the NOS-targeting pharmacological inhibition in
vitro. The current work explores the impact of inducible and neuronal
NOS (iNOS and nNOS) inhibitors, BA-103 and BA-101, respectively, on a
glioblastoma xenograft model. Both agents mitigate nitrosative stress
through distinct mechanisms. NOD-SCID mice were used to establish
a subcutaneous xenograft tumor model with U-87 MG cells. BA-103
and BA-101 were administered to mice via intraperitoneal injections.
Tumor metrics, including weight and volume, were assessed. Im-
munofluorescence and Western blots were conducted to assess ni-
trosative stress, tumor proliferation, and cell death. Treatment with
the NOS inhibitors, particularly with BA-101, significantly reduced
tumor volume in the xenograft model. A dose-dependent study with
BA-101 identified 80 mg/kg as the most efficacious dose for GBM
treatment. Combining BA-101 with the antitumor drug temozolomide
(TMZ) synergistically reduced tumor size and significantly increased
survivability in mice bearing TMZ-sensitive cells. Our findings suggest
that targeting nNOS holds promise as a therapeutic strategy for GBM
treatment.

Keywords: Apoptosis, brain, glioblastoma, iNOS, neuroscience, nitric
oxide, nNOS.

Introduction
Glioblastoma (GBM) is the most malignant type of glioma (1). GBM is at-
tributed to 14.5 % of all brain tumors and 48.6% of primary malignant
brain tumors (2, 3). The expected median overall survival rate of persons
with this kind of tumor is 6–14 months (4) and the annual incidences of
GBM account for 3.19–4.17 cases/100,000 person/year (3, 5, 6). Some
studies suggested that age and gender are important factors in glioma
development (7, 8). The treatment approach varies depending on the type
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of tumor and typically involves a mix of surgery, chemotherapy, and ra-
diation (9, 10). Despite decades of research, GBM remains a formidable
and deadly cancer. Current treatment approaches face limitations, such
as drug resistance, molecular heterogeneity, and aberrant activation of
different signaling pathways (1, 11). Severe adverse effects of the treat-
ments currently in use for patients with GBM also pose a serious prob-
lem (12, 13). This prompts an urgent need for new therapies. Available
pharmacological agents also face the problem of crossing the blood–brain
barrier (14). Some promising drugs for first-line treatment are currently
under development (15, 16). The correct strategy for brain tumor treat-
ment should be to target the selective pathways that can give long-term
therapeutic effects (10).

Nitric oxide (NO) is a small gaseous molecule that plays a significant
role in various biological processes (17). It is crucial in regulating vascu-
lar function (such as vascular permeability, vasodilation, and angiogen-
esis), neural system development, neurotransmission, smooth muscle re-
laxation, immune responses, and cytotoxic functions (18). We have shown
that excessive NO is implicated in the development of many neurodevel-
opmental, neurodegenerative, and neuropsychiatric disorders (19–27).
NO is synthesized by inducible, endothelial, and neuronal nitric oxide syn-
thase (iNOS, eNOS, and nNOS, respectively) (17). Increased activity of NOS
enzymes and nitrosative stress are major culprits for developing many
cancers (28, 29). Meanwhile, NOS inhibitors have been reported to allevi-
ate different kinds of cancers, such as metastatic melanoma (30), human
breast cancer (31), ovarian cancer (32), oral cell carcinoma (33), head and
neck cancer (34), colon cancer (35, 36), and others. The cellular pheno-
types and behaviors are impacted by the elevated NO present in the tu-
mor microenvironment. In GBM, elevated NO levels are associated with
advanced stages and reduced patient survival rate (37). NO involvement
in cancer was reported long ago (38), but its exact mechanism is contro-
versial and vague (37).

Excessive NO concentration leads to increased nitrosative and oxida-
tive stress, which results in DNA strand breakage by alkylation and deam-
ination of the nucleic acid bases in DNA (39). Aberrant NO also inhibits
the activity of DNA repair enzymes (40). These changes enhance the neo-
plastic transformation and inhibition of apoptosis, promoting cancer de-
velopment (41).

NO can induce both protumorogenic and antitumorogenic effects de-
pending on its levels and physiological conditions (42). In GBM, NO gener-
ation by tumor cells may facilitate a progrowth environment for tumor cell
proliferation and neovascularization (42). In gliomas, iNOS and nNOS have
been found to promote glioma stem cell growth (43), develop temozolo-
mide (TMZ) treatment resistance, and modulate the immune response.
NO is also known to inhibit apoptosis via S-nitrosylation or cyclic GMP-
dependent pathways (44). NO can also inhibit catalase and cytochrome
P-450 and can cause redox imbalance and oxidative stress (44). Identify-
ing the molecules targeting NO and NO-affected molecular pathways in
GBM could be a novel target for the brain tumor study.

Our previous in vitro experiments targeting iNOS and nNOS with in-
hibitors have shown a marked reduction in U-87 MG cell proliferation (45).
The current study (Figure 1) was designed to assess iNOS and nNOS inhi-
bition as a therapeutic approach for GBM in vivo. We also compared the
efficacy of this approach with the well-known antitumor drug TMZ and
evaluated the effects of the combined action of BA-101 and TMZ.

Results
NOS Inhibition Reduces Tumor Growth in GBM Mice
The effects of pharmacological inhibition of nNOS and iNOS on tumor
size and volume in mice were studied compared to vehicle-treated mice.
In this set of experiments, we treated the mice with NOS inhibitors for
8 days. BA-103 reduced tumor size when compared to vehicle-treated
mice. BA-101 also significantly reduced tumor growth compared to
the vehicle group. Furthermore, BA-101 inhibited tumor growth at a
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Figure 1. Schematic representation of the study. 6-week-old NOD-SCID male mice were injected with U-87 MG cells (1 × 106). Animals were treated with drugs
or vehicles when tumors were developed. Tumor volumes were measured during different days of the experiment. The animals were sacrificed, and the tumors
were isolated at the end of the experiment. WB and IF assays were performed to evaluate nitrosative stress and cell degradation processes.

considerably greater extent than BA-103. A combined treatment of
BA-101 and BA-103 showed a marked reduction in tumor size compared
to BA-101 or BA-103 treatment alone (Figure 2A and B). These results im-
ply that both NOS inhibitors prevent tumor growth, but BA-101 was more
effective than BA-103. Body weight analysis did not significantly change
in all groups (Figure 2C). Tumor volume determination in real-time analy-
sis showed that the tumors grew gradually in the vehicle group. Following
the treatments with BA-103 and BA-101, the tumor growth was slower
than in the vehicle group (Figure 2D).

The Dose-dependent Antitumor Effect of BA-101
We performed a dose-dependent study of BA-101, which appeared to be
more effective in inhibiting the glioblastoma tumor volume than BA-103.
Three doses of this compound were assessed, 20, 40, and 80 mg/kg. These
treatments of BA-101 were given to mice daily for 14 days after the tumor
size reached around 50 mm3. All three doses of BA-101 reduced the tumor
volume (Figure 3B and D) and tumor weight (Figure 3C) compared to the
vehicle group and this effect was dose dependent with the most potent
reduction of tumor growth at 80 mg/kg. The serial determination of the
tumor volume on different days of the experiment showed that the tu-
mor size in the vehicle group grew faster than in the treatment groups,
reaching a statistically significant difference already on the fifth day
(Figure 3D).

Effects of BA-101 on Cell Proliferation, DNA Damage, Nitrosative Stress,
and Apoptosis in GBM Mice
Treatment of mice with 80 mg/kg BA-101 showed a reduction in the tumor
proliferating marker Ki-67 levels compared to the vehicle group (Figure
4A). The nitrosative stress marker 3-Ntyr was reduced 2-fold in the BA-
101–treated mice compared to the vehicle-treated group (Figure 4B
and C). The DNA degradation marker, cleaved PARP1, appeared to be dou-
bled in mice subjected to the BA-101 treatment compared to the vehicle
group (Figure 4D). The apoptotic marker, cleaved caspase 3, was also sig-
nificantly increased by the BA-101 treatment (Figure 4E). These results

show that BA-101 treatment effectively reduced tumor proliferation and
nitrosative stress while promoting DNA damage and apoptosis.

Effects of the Combined Treatment with BA-101 and TMZ on
Tumor Growth
Then, the efficacy of BA-101 was compared to the TMZ, the gold stan-
dard of glioblastoma chemotherapy (46). We treated the mice with tu-
mors daily for 8 days with BA-101 or TMZ or in combination with both (TMZ
and BA-101). BA-101 and TMZ alone significantly reduced tumor size at
a similar extent. However, treatment of GBM mice with the combination
of TMZ and BA-101 provided a dramatically more significant reduction
in the tumor volume than in the vehicle-treated groups (Figure 5A and
B). Thus, tumor volume in the BA-101 + TMZ group of mice was reduced
6-fold, while in the BA-101 and TMZ groups, the reduction reached 50%
and 60%, respectively. Real-time tumor volume analysis revealed consis-
tent growth in the vehicle-treated group, whereas treatment with BA-
101, TMZ, or their combination significantly reduced tumor growth. The
most pronounced effect was observed in mice receiving the combination
therapy (Figure 5C). We also tested the survival of mice after treatment
with BA-101, TMZ, and the combination of BA-101 and TMZ. In the survival
study, we treated the tumor-bearing mice with BA-101 daily and TMZ for
5 days a week in a 2-weeks-on, 2-weeks-off cycle until the mice reached
the end of their survival period. The expected number of survival days
(probability of survival) was the highest in the combo treatment with BA-
101 and TMZ compared to the treatment of GBM mice with both the vehi-
cle and either of these drugs alone (Figure 5D).

Materials and Methods
Materials
Primary antibodies anti-Ki-67 (AB16667) from Abcam, anti-cleaved
caspase 3 (#9661) and secondary antibodies, anti-rabbit Alexa fluor
594 (#8889), anti-mouse Alexa Fluor 488 (#4408), Horseradish per-
oxidase (HRP)-conjugated anti-rabbit (7076S), HRP-conjugated anti-
mouse (7074S), ProLong Gold Antifade with the nucleus marker DAPI
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Figure 2. NOS inhibition prevents tumor growth in glioblastoma. (A) Representative tumor images in the Vehicle (n = 10), BA-103 (n = 10), BA-101 (n = 10),
and BA-101 + BA-103 (Combo) (n = 12) groups of mice. (B) Statistical analysis of tumor volume in the groups mentioned above. (C) Statistical analysis of the
dynamics of body weight changes in the above groups of mice during the experiment. (D) Statistical analysis of the dynamics of tumor volume changes in mice
treated with vehicle (n = 10), BA-103 (n = 10), BA-101 (n = 10), and BA-103 + BA-101 (n = 12) during the experiment. Data are presented as mean ± SEM.
∗∗∗∗P < 0.0001, ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05, and ns, not significant.

(#8961), and protease phosphatase inhibitor cocktail (#5872) were pur-
chased from Cell Signaling Technology (Danvers, MA, USA). Primary anti-
body anti-3-nitrotyrosine (3-Ntyr) (AB110282) was procured from Abcam
(Cambridge, UK). Primary antibodies, anti-PARP1 (SC-56196) were pur-
chased from Santa Cruz Biotechnology Inc. Other general chemicals were
purchased from Sigma-Aldrich (St. Louis, MO, USA) and Bio-Rad Labora-
tories (Hercules, CA, USA).

The chemical identities of compounds BA-101 and BA-103 will be
made available upon patent issuance. Patent applications covering the
novel therapeutic use of these previously known molecules have been

filed. Researchers interested in obtaining the compounds for research
purposes after patent issuance should contact the corresponding author.
We truly believe in data reproducibility and eager to uncover the names
of the molecules as stated above.

Animals
All animal experiments were conducted under the guidelines of the Insti-
tutional Animal Care Committee of the Hebrew University of Jerusalem
and Use Committee and the Association for Assessment and Accred-
itation of Laboratory Animal Care International. The ethical approval
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Figure 3. Dose-dependent treatment with BA-101. (A) Representative tumor images after dissection of the tumors in the dose–response study of BA-101.
(B) Statistical analysis of tumor volume in mice treated with vehicle, and 20, 40, and 80 mg/kg of BA-101. (C) Statistical analysis of tumor weight in mice treated
with vehicle, and 20, 40, and 80 mg/kg of BA-101. (D) Statistical analysis of tumor growth comparison in mice treated with vehicle (n = 8), and 20 mg/kg (n =
8), 40 mg/kg (n = 8), and 80 mg/kg of BA-101 (n = 8) on different days during the treatment. Data are presented as mean ± SEM. ∗∗∗∗P < 0.0001, ∗∗∗P < 0.001,
∗∗P < 0.01, and ∗P < 0.05.

(IACUC-MD-23-17231-5) was granted by the Hebrew University of
Jerusalem. This study is reported under ARRIVE guidelines. Five-week-old
NOD.CB17-Prkdc-scid/NCrHsd male mice were purchased from Envigo.

Glioblastoma Cell Line
Uppsala 87 Malignant Glioma (U-87 MG) cell line was obtained from
the American Type Culture Collection (ATCC) and maintained in Dul-
becco’s modified Eagle medium (DMEM, Gibco 41965-039), 10% fe-

tal bovine serum (FBS, Gibco 10270-106), 1% penicillin/streptomycin,
10,000 U/mL (Pen/Strep, Gibco 15140-122) in the humidified atmosphere
(37°C, 5% CO2).

Generation of Subcutaneous Glioblastoma Xenograft Model and
Drug Treatment
Subcutaneous glioblastoma-bearing mice were obtained by subcuta-
neous injection of 1 × 106 U-87 MG cells in 100 μL PBS into the flanks of
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Figure 4. NOS inhibition with BA-101 induces apoptosis and reduces nitrosative stress. (A) Left: Representative confocal images of Ki-67 and DAPI in tumor
sections of mice with Vehicle and BA-101(80 mg/kg) groups. The images were captured at 40 × magnification. Right: Statistical analysis of the mean fluorescence
intensity of Ki-67 in both groups. (B) Left: Representative confocal images of 3-Ntyr and DAPI in tumor sections of mice of Vehicle and BA-101 groups. The image
was captured at 40 × magnification. The scale bar in all images = 50 μm. Right: Statistical analysis of the mean fluorescence intensity of 3-Ntyr in both groups.
(C) A representative WB image of 3-Ntyr and its quantitative analysis in Vehicle and BA-101 groups of mice. (D) A representative WB of DNA degradation marker
PARP1 and its quantitative analysis in Vehicle and BA-101 groups. (E) Representative WB of cleaved caspase 3 protein and its quantitative analysis in Vehicle
and BA-101 groups of mice. Data are presented as mean± SEM. n = 8 in each group. ∗∗∗P < 0.001, and ∗∗P < 0.01.

6-week-old male NOD.CB17-Prkdc-scid/NCrHsd (NOD-SCID) mice. Then,
2–3 weeks after tumor cell implantation, when the average tumor size
reached approximately 50 mm3, mice were randomly divided into four
groups, with 6–10 mice per group. Animals were treated intraperitoneally
with a vehicle, BA-103 (10 mg/kg), BA-101 (80 mg/kg), or TMZ (10 mg/kg)
in 100 μl of PBS containing 5% DMSO. All mice were sacrificed after the
tumor size reached 1.5 cm in either of the dimensions. Tumor tissues were

surgically excised, either stored at −80°C or fixed with 4% paraformalde-
hyde solution, dehydrated, and used for cryosectioning.

Tumor Growth and Probability of Survival
The tumor growth was assessed by measuring the tumor weight and
volume. The mouse body weight and tumor size were measured every
other day during the experiments. The tumor volume was measured
with a digital caliper and calculated with the following formula: tumor
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Figure 5. Combo treatment of TMZ and BA-101 increases survivability. (A) Representative tumor images after dissection in Vehicle, BA-101 (80 mg/kg), TMZ,
and BA-101 + TMZ (Combo) groups. (B) Statistical analysis of tumor volume in Vehicle, BA-101, TMZ, and BA-101 + TMZ groups. (C) Statistical analysis of tumor
volume growth comparison in Vehicle (n = 6), BA-101 (n = 6), TMZ (n = 6), and BA-101 + TMZ (n = 6) groups on different days during the treatment. (D) Kaplan–
Meier plot for mice harboring U-87 MG glioblastoma xenografts treated with Vehicle (n = 6), BA-101 (n = 6), TMZ (n = 6), and BA-101 + TMZ (n = 6). Data are
presented as mean ± SEM. ∗∗∗∗P < 0.0001, ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05, and ns, not significant.

volume = (length × width2)/2. The probability of survival was deter-
mined when the tumor size was 1.5 cm in either dimension, length, or
width.

Western Blots
The tissues were homogenized in a freshly prepared RIPA buffer as de-
scribed previously (22). It contained 30 mM HEPES (pH 7.4), 150 mM
NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dode-
cyl sulfate, 5 mM EDTA, 1 mM Na3VO4, 50 mM NaF, 1 mM PMSF, and 1%

protease/phosphatase inhibitors cocktail (pH 7.7). All these chemicals
were purchased from Sigma-Aldrich. Homogenization was performed on
ice using a Teflon pestle and a Jumbo stirrer from Thermo Fisher Scien-
tific (Waltham, MA, USA). The homogenates underwent centrifugation at
17,000 × g for 30 min at a temperature of 4°C. The supernatant of the
sample was collected, and the protein concentration was determined us-
ing the bicinchoninic acid protein assay kit provided by Sigma-Aldrich. The
samples underwent polyacrylamide gel electrophoresis, after which they
were transferred onto a Polyvinylidene difluoride (PVDF) membrane using
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a semidry transfer method (Bio-Rad Laboratories). Nonspecific sites were
effectively blocked by 5% dried skimmed milk in Tris-buffered saline with
Tween 20 (TBST). The TBST solution consisted of 135 mM NaCl, 50 mM
Tris, and 0.1% Tween 20, pH 7.4. This blocking process was carried out for
2 h at room temperature. PVDF membranes containing the transferred
proteins were incubated overnight at 4°C on a shaker with a primary anti-
body. Primary antibodies used were anti-3-Ntyr [diluted 1:1000 for West-
ern blots (WB) and 1:200 for immunofluorescence (IF)], anti-cleaved cas-
pase 3 (diluted 1:1000), anti-cleaved PARP1 (diluted 1:1000), and anti-
β-actin (diluted 1:1000). Following the exposure to primary antibodies,
the membranes underwent a washing step with TBST for three times 10
min each followed by an incubation process with anti-mouse/rabbit HRP-
conjugated secondary antibody for 1 h at ambient temperature. The spe-
cific binding of the protein was identified using an ECL substrate manu-
factured by Bio-Rad Laboratories. The bands were acquired using the Bio-
Rad Chemidoc imaging system as described previously (22).

IF and Confocal Microscopy
After dissection, the tumors were directly preserved in a 4% para-
formaldehyde solution for 2 days. After fixation, the tumors were grad-
ually dehydrated with 10%, 20%, 30%, sucrose solution. Using cryostats,
the 20-μm-thick tumor section was cut. The tumor sections were pro-
cessed for IF. The sections were incubated in a blocking buffer followed
by anti-rabbit Ki-67 (diluted 1:500), and 3-Ntyr (diluted 1:200) primary
antibodies. Then, the sections were rinsed with PBS and incubated with
anti-rabbit Alexa Fluor 594 (diluted 1:1000) and anti-mouse Alexa Fluor
488 (diluted 1:1000) secondary antibodies for 2 h in the dark. After the in-
cubation with secondary antibodies, sections were washed with PBS three
times and mounted on glass slides with DAPI. Images were captured at
40X using a Nikon confocal microscope.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism Software, v. 9.3
(San Diego, CA, USA). Data are presented as mean ± SEM. A two-way
ANOVA followed by Tukey’s multiple comparison tests was performed to
analyze body weight and tumor volume on different days during the ex-
periment. A one-way ANOVA followed by Tukey’s multiple comparison test
was used for the group comparisons to measure tumor volume at the
end of the experiment. An unpaired t test was used for WB and IF. The
differences between the groups were considered statistically significant
at P < 0.05.

Discussion
Our recent study on GBM proved the involvement of nitric oxide in tumor
progression and showed that NOS inhibition can prevent tumor prolifer-
ation in vitro. A study by Kruglyakov et al. showed that NOS inhibitors re-
duced GBM cell proliferation in vitro (45). The current study investigates
the efficacy of NOS inhibitors in the xenograft mouse model of GBM.

Overexpression of nNOS has been reported in GBM patient samples
(47). Another study also found higher nNOS activity in high-grade glioma
(48). This shows the significant link between malignancy in glial tumors
and NO overproduction, which can be associated with the overexpression
of nNOS or its elevated activity. iNOS inhibitors have also been found to
be effective in some studies for GBM treatment (49, 50).

Treatment of the xenograft mouse model of GBM with BA-103 and BA-
101 in our experiments reduced tumor weight and volume, showing that
NOS is implicated in cell death and tumor growth in this kind of cancer.
Real-time tumor progression data showed that tumor growth was signif-
icantly inhibited by BA-103, BA-101, or the mixture of these two drugs.
BA-101 appeared to be more effective in tumor volume reduction than
BA-103. Combined treatment with BA-103 and BA-101 provided a more
potent preventive effect on tumor growth. Further body weight measure-
ment in all groups showed no difference. Since BA-101 displayed higher
efficacy in inhibiting tumor growth than BA-103, we chose this NOS in-
hibitor for a dose–response study to find the most effective dose of BA-
101 for treatment. BA-101 inhibited tumor growth at all doses used in
this study, from 20 to 80 mg/kg. This effect was dose dependent, with the
most significant inhibition of tumor progression among the doses tested
being achieved at 80 mg/kg.

A nuclear protein, Ki-67, is widely used as a proliferation marker (51).
Its expression correlates directly with metastasis and clinical tumor stage
(52). We found that the treatment of mice with BA-101 at a dose of 80
mg/kg had lower expression of Ki-67 than the vehicle-treated group, in-
dicating the lower proliferation of the tumor cells. Apoptosis ensures
the homeostatic balance between cell proliferation and death (53–55).
It represents a molecular pathway of self-destruction to eliminate the
damaged or failing cells and subcellular structures and molecules and
to allow their repair or replacement (56). BA-101 treatment consider-
ably increased the cleaved caspase 3 and cleaved PARP1 levels, indicat-
ing augmented apoptosis and DNA degradation. Activation of these self-
destruction processes was likely associated with the tumor volume and
size growth suppression in the GBM model used in this study. Notably, the
link between DNA degradation and apoptosis has been previously found,
and these processes might be followed by cell detoxification and repair
(57). Inhibiting nNOS can trigger apoptosis in glioblastoma cells. Reduc-
ing NO levels through nNOS inhibition disrupts survival pathways, leading
to programmed cell death. This mechanism is crucial, as glioblastomas of-
ten evade apoptosis, contributing to their malignancy (58).

Further, we assessed the nitrosative stress marker 3-Ntyr levels in tu-
mor sections. 3-Ntyr is formed by the nitration of tyrosine residues in both
protein-bound and free forms by reactive peroxynitrite molecules (59). In
this study, both WB and IF confirmed a reduction in 3-Ntyr levels and con-
sequently reduced nitrosative stress in the BA-101 treatment group.

TMZ is a monofunctional DNA alkylating agent employed to treat pa-
tients with newly diagnosed GBM (60). It is a lipophilic molecule with oral
administration feasibility, which can effectively cross the blood–brain bar-
rier (61). TMZ has been a gold standard drug for GBM treatment (46). We
compared the ability of BA-101 and TMZ alone and in combination to in-
hibit tumor growth. The reduction in tumor volume was greater in GBM
mice treated with the combination of the two drugs compared to BA-101
or TMZ alone. nNOS inhibition has been shown to sensitize glioblastoma
cells to chemotherapeutic agents like TMZ. Pretreatment with nNOS in-
hibitors decreased cell viability in glioblastoma cells exposed to TMZ (58).

The limitations of this study were that it did not include the pharma-
codynamic assessments required for early-phase clinical trials to evaluate
the safety and efficacy of BA-101 in patients with GBM. We consider the
hurdles in clinical translation, such as variability in patient response, po-
tential toxicity, and the need for optimized dosing regimens. This study
serves as a proof of concept demonstrating the involvement of nitric ox-
ide synthase (NOS) in GBM pathophysiology. It provides a strong founda-
tion for future investigations to refine therapeutic strategies and advance
clinical translation.

In conclusion, this study showed that NO synthesis overactivation
in GBM, particularly neuronal NO production, could be an essential
pathogenic factor of tumor growth. The selective nNOS inhibitor BA-101
or its combination with TMZ might be a prospective therapeutic agent
for GBM treatment. Further studies are required to assess the safety and
efficacy of this novel therapeutic approach in patients with GBM.

Data Availability Statement
The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.
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